论文标题

一个永久性的美国人的最佳对冲与单一交易

Optimal hedging of a perpetual American put with a single trade

论文作者

Cai, Cheng, De Angelis, Tiziano, Palczewski, Jan

论文摘要

众所周知,在实践中,使用Delta Hedging进行对冲财务选择是不可行的。交易者通常会根据固定交易时间或固定交易价格依靠离散的套期保值策略(即,仅当基础资产的价格达到一些预定价值时才发生交易)。以这种见识为动机,为了获得明确的解决方案,我们考虑了永久性投票选项的卖方,可以对她的投资组合进行对冲,直到基础股票价格留下一定范围的价值$(a,b)$。我们确定最佳交易边界作为初始库存持有的功能,以及债券/股票投资组合的最佳对冲策略。此处的最优性是指库存留下间隔$(a,b)$的(随机)时间的对冲错误的差异。我们的研究导致对最佳边界和最佳库存持有的分析表达式,可以不用努力对其进行数值评估。

It is well-known that using delta hedging to hedge financial options is not feasible in practice. Traders often rely on discrete-time hedging strategies based on fixed trading times or fixed trading prices (i.e., trades only occur if the underlying asset's price reaches some predetermined values). Motivated by this insight and with the aim of obtaining explicit solutions, we consider the seller of a perpetual American put option who can hedge her portfolio once until the underlying stock price leaves a certain range of values $(a,b)$. We determine optimal trading boundaries as functions of the initial stock holding, and an optimal hedging strategy for a bond/stock portfolio. Optimality here refers to the variance of the hedging error at the (random) time when the stock leaves the interval $(a,b)$. Our study leads to analytical expressions for both the optimal boundaries and the optimal stock holding, which can be evaluated numerically with no effort.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源