论文标题

可信赖的学习范围启用了网络物理系统

Trusted Confidence Bounds for Learning Enabled Cyber-Physical Systems

论文作者

Boursinos, Dimitrios, Koutsoukos, Xenofon

论文摘要

网络物理系统(CPS)可以通过使用启用学习的组件(LEC)(例如深度神经网络(DNN))来受益,以进行感知和决策任务。但是,DNN通常是非透明的,对其预测的推理非常困难,因此它们在安全至关重要的系统中的应用非常具有挑战性。如果可以通过置信度量量量化我们信任他们的产出的数量,则可以将LEC更容易地集成到CPS中。本文提出了一种基于归纳综合预测(ICP)的计算置信度界限的方法。我们训练三胞胎网络体系结构,以了解输入数据的表示形式,这些数据可用于估计培训数据集中的测试示例和示例之间的相似性。然后,这些表示形式用于估算基于三胞胎中使用的神经网络体系结构的分类器的设置预测的信心。使用机器人导航基准评估该方法,结果表明我们可以实时计算可信赖的置信度范围。

Cyber-physical systems (CPS) can benefit by the use of learning enabled components (LECs) such as deep neural networks (DNNs) for perception and decision making tasks. However, DNNs are typically non-transparent making reasoning about their predictions very difficult, and hence their application to safety-critical systems is very challenging. LECs could be integrated easier into CPS if their predictions could be complemented with a confidence measure that quantifies how much we trust their output. The paper presents an approach for computing confidence bounds based on Inductive Conformal Prediction (ICP). We train a Triplet Network architecture to learn representations of the input data that can be used to estimate the similarity between test examples and examples in the training data set. Then, these representations are used to estimate the confidence of set predictions from a classifier that is based on the neural network architecture used in the triplet. The approach is evaluated using a robotic navigation benchmark and the results show that we can computed trusted confidence bounds efficiently in real-time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源