论文标题

LC-GAN:基于生成对抗网络的图像到图像翻译,用于内窥镜图像

LC-GAN: Image-to-image Translation Based on Generative Adversarial Network for Endoscopic Images

论文作者

Lin, Shan, Qin, Fangbo, Li, Yangming, Bly, Randall A., Moe, Kris S., Hannaford, Blake

论文摘要

智能视野在计算机辅助和机器人手术中具有吸引力。基于远见的分析通常需要大量标记的数据集,但是手动数据标签既昂贵又耗时。我们研究了一种新型的跨域策略,以基于生成对抗性网络(GAN)提出图像到图像转换模型Live-davavaer gan(LC-GAN),以减少手动数据标记的需求。我们考虑在任务是在未标记的实时手术数据集上进行仪器分割的情况下可用的标记尸体手术数据集的情况。我们训练LC-GAN学习尸体和现场图像之间的映射。对于实时图像细分,我们首先将实时图像转换为使用LC-GAN的假符号图像,然后使用在真实的尸体数据集中训练的型号对假界图像进行分割。所提出的方法充分利用标记的尸体数据集进行实时图像分割,而无需标记实时数据集。 LC-GAN有两个具有不同体系结构的生成器,可利用从基于尸体图像的分割任务中学到的深度特征表示。此外,我们提出结构相似性损失和分割一致性损失,以提高翻译过程中的语义一致性。我们的模型可以实现更好的图像到图像翻译,并导致提出的跨域分割任务中的分割性能提高。

Intelligent vision is appealing in computer-assisted and robotic surgeries. Vision-based analysis with deep learning usually requires large labeled datasets, but manual data labeling is expensive and time-consuming in medical problems. We investigate a novel cross-domain strategy to reduce the need for manual data labeling by proposing an image-to-image translation model live-cadaver GAN (LC-GAN) based on generative adversarial networks (GANs). We consider a situation when a labeled cadaveric surgery dataset is available while the task is instrument segmentation on an unlabeled live surgery dataset. We train LC-GAN to learn the mappings between the cadaveric and live images. For live image segmentation, we first translate the live images to fake-cadaveric images with LC-GAN and then perform segmentation on the fake-cadaveric images with models trained on the real cadaveric dataset. The proposed method fully makes use of the labeled cadaveric dataset for live image segmentation without the need to label the live dataset. LC-GAN has two generators with different architectures that leverage the deep feature representation learned from the cadaveric image based segmentation task. Moreover, we propose the structural similarity loss and segmentation consistency loss to improve the semantic consistency during translation. Our model achieves better image-to-image translation and leads to improved segmentation performance in the proposed cross-domain segmentation task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源