论文标题

通过嵌套还原级正则化的多元功能回归

Multivariate Functional Regression via Nested Reduced-Rank Regularization

论文作者

Liu, Xiaokang, Ma, Shujie, Chen, Kun

论文摘要

我们提出了与多元功能响应和预测指标拟合回归模型中嵌套的减少回归(NRRR)方法,以实现量身定制的维度降低并促进所得功能模型的解释/可视化。我们的方法基于对功能回归表面施加的两级低级结构。全球低级结构标识了一小部分潜在的主功能响应和驱动基础回归关联的预测因子。然后,局部低级结构控制主功能响应和预测因子之间关联的复杂性和平滑性。通过基础扩展方法,功能问题归结为一个有趣的集成矩阵近似任务,其中集成的低级矩阵的块或子膜共享一些公共行空间和/或列空间。开发了具有收敛保证的迭代算法。我们确定了NRRR的一致性,并通过非质合分析表明,它至少可以达到与减少级别回归的错误率。模拟研究证明了NRRR的有效性。我们将NRRR应用于电力需求问题,以将日常用电的轨迹与每日温度的轨迹联系起来。

We propose a nested reduced-rank regression (NRRR) approach in fitting regression model with multivariate functional responses and predictors, to achieve tailored dimension reduction and facilitate interpretation/visualization of the resulting functional model. Our approach is based on a two-level low-rank structure imposed on the functional regression surfaces. A global low-rank structure identifies a small set of latent principal functional responses and predictors that drives the underlying regression association. A local low-rank structure then controls the complexity and smoothness of the association between the principal functional responses and predictors. Through a basis expansion approach, the functional problem boils down to an interesting integrated matrix approximation task, where the blocks or submatrices of an integrated low-rank matrix share some common row space and/or column space. An iterative algorithm with convergence guarantee is developed. We establish the consistency of NRRR and also show through non-asymptotic analysis that it can achieve at least a comparable error rate to that of the reduced-rank regression. Simulation studies demonstrate the effectiveness of NRRR. We apply NRRR in an electricity demand problem, to relate the trajectories of the daily electricity consumption with those of the daily temperatures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源