论文标题

查询复杂性和多项式Freiman-Ruzsa猜想

Query complexity and the polynomial Freiman-Ruzsa conjecture

论文作者

Zhelezov, Dmitrii, Pálvölgyi, Dömötör

论文摘要

我们证明了以下形式的弱多项式Freiman-Ruzsa猜想的查询复杂性变体。对于任何$ε> 0 $,A集成$ A \ subset \ Mathbb {z}^d $带dumping $ k $具有至少$ k^{ - \ frac { - \ frac {4}ε} | 我们将这种结构结果应用于整数集的“少数产品,许多总和”现象的简单证明。最终的界限是明确的,并在波尔加因和张的开创性结果上得到了改善。

We prove a query complexity variant of the weak polynomial Freiman-Ruzsa conjecture in the following form. For any $ε> 0$, a set $A \subset \mathbb{Z}^d$ with doubling $K$ has a subset of size at least $K^{-\frac{4}ε}|A|$ with coordinate query complexity at most $ε\log_2 |A|$. We apply this structural result to give a simple proof of the "few products, many sums" phenomenon for integer sets. The resulting bounds are explicit and improve on the seminal result of Bourgain and Chang.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源