论文标题

卷积占用网络

Convolutional Occupancy Networks

论文作者

Peng, Songyou, Niemeyer, Michael, Mescheder, Lars, Pollefeys, Marc, Geiger, Andreas

论文摘要

最近,隐式神经表示因基于学习的3D重建而广受欢迎。在证明有希望的结果的同时,大多数隐式方法仅限于单个对象的简单几何形状,并且不扩展到更复杂或大规模的场景。隐式方法的关键限制因素是它们简单的完全连接的网络体系结构,该结构不允许将本地信息整合到观测值中或结合诸如翻译均衡等电感偏见。在本文中,我们提出了卷积占用网络,这是对对象和3D场景进行详细重建的更灵活的隐式表示。通过将卷积编码器与隐式占用解码器相结合,我们的模型结合了电感偏见,在3D空间中实现结构化推理。我们通过从嘈杂的点云和低分辨率体素表示的复杂几何形状重建复杂的几何形状来研究所提出的表示的有效性。我们从经验上发现,我们的方法可以实现单个对象的细粒度隐式3D重建,缩放到大型室内场景,并从合成到真实数据中很好地概括了。

Recently, implicit neural representations have gained popularity for learning-based 3D reconstruction. While demonstrating promising results, most implicit approaches are limited to comparably simple geometry of single objects and do not scale to more complicated or large-scale scenes. The key limiting factor of implicit methods is their simple fully-connected network architecture which does not allow for integrating local information in the observations or incorporating inductive biases such as translational equivariance. In this paper, we propose Convolutional Occupancy Networks, a more flexible implicit representation for detailed reconstruction of objects and 3D scenes. By combining convolutional encoders with implicit occupancy decoders, our model incorporates inductive biases, enabling structured reasoning in 3D space. We investigate the effectiveness of the proposed representation by reconstructing complex geometry from noisy point clouds and low-resolution voxel representations. We empirically find that our method enables the fine-grained implicit 3D reconstruction of single objects, scales to large indoor scenes, and generalizes well from synthetic to real data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源