论文标题
初始化对元神经优化器性能的影响
Influence of Initialization on the Performance of Metaheuristic Optimizers
论文作者
论文摘要
所有元启发式优化算法都需要一些初始化,并且这种优化器的初始化通常是随机执行的。但是,初始化可能会对此类算法的性能产生重大影响。本文对五个优化者的收敛性和准确性进行了22种不同初始化方法的系统比较:差异进化(DE),粒子群优化(PSO),杜鹃搜索(CS),人造蜜蜂结合(ABC)算法和遗传算法(GA)。我们已经使用了具有不同属性和模态的19个不同的测试功能来比较初始化,人口大小和迭代次数的可能影响。严格的统计排名测试表明,使用DE算法的43.37 \%的功能在不同的初始化方法上显示出显着差异,而使用PSO和CS算法的73.68%\%\%受不同初始化方法的显着影响。模拟表明DE对初始化不太敏感,而PSO和CS均对初始化更敏感。另外,在相同最大数量的功能评估(FES)的条件下,人口大小也可以具有很强的影响。粒子群优化通常需要较大的人口,而杜鹃搜索只需要少量人口规模。差异进化更大程度地取决于迭代的数量,相对较小的迭代人群可以带来更好的结果。此外,ABC对初始化更敏感,而这种初始化对GA的影响很小。某些概率分布,例如Beta分布,指数分布和瑞利分布通常会导致更好的性能。还详细讨论了这项研究的含义和进一步的研究主题。
All metaheuristic optimization algorithms require some initialization, and the initialization for such optimizers is usually carried out randomly. However, initialization can have some significant influence on the performance of such algorithms. This paper presents a systematic comparison of 22 different initialization methods on the convergence and accuracy of five optimizers: differential evolution (DE), particle swarm optimization (PSO), cuckoo search (CS), artificial bee colony (ABC) algorithm and genetic algorithm (GA). We have used 19 different test functions with different properties and modalities to compare the possible effects of initialization, population sizes and the numbers of iterations. Rigorous statistical ranking tests indicate that 43.37\% of the functions using the DE algorithm show significant differences for different initialization methods, while 73.68\% of the functions using both PSO and CS algorithms are significantly affected by different initialization methods. The simulations show that DE is less sensitive to initialization, while both PSO and CS are more sensitive to initialization. In addition, under the condition of the same maximum number of function evaluations (FEs), the population size can also have a strong effect. Particle swarm optimization usually requires a larger population, while the cuckoo search needs only a small population size. Differential evolution depends more heavily on the number of iterations, a relatively small population with more iterations can lead to better results. Furthermore, ABC is more sensitive to initialization, while such initialization has little effect on GA. Some probability distributions such as the beta distribution, exponential distribution and Rayleigh distribution can usually lead to better performance. The implications of this study and further research topics are also discussed in detail.