论文标题
非本地流体动力学作为一维动力学方程的缓慢流动性
Non-local Hydrodynamics as a slow manifold for the one-dimensional kinetic equation
论文作者
论文摘要
我们证明,对于线性的一维动力学方程,我们证明了一个明确的非本地流体动力闭合,独立于弛豫时间的大小。我们将这个动力学方程与从查普曼(Chapman)获得的局部近似值进行了比较,以使少量松弛时间扩展。我们的结果取决于雅各比运算符的光谱理论,具有排名一的扰动。
We prove an explicit, non-local hydrodynamic closure for the linear one-dimensional kinetic equation independent on the size of the relaxation time. We compare this dynamical equation to the local approximations obtained from the Chapman--Enskog expansion for small relaxation times. Our results rely on the spectral theory of Jacobi operators with rank-one perturbations.