论文标题

视觉模仿学习的几何观点

A Geometric Perspective on Visual Imitation Learning

论文作者

Jin, Jun, Petrich, Laura, Dehghan, Masood, Jagersand, Martin

论文摘要

我们考虑没有人类监督的视觉模仿学习问题(例如,动力学教学或远程操作),也无法获得交互式增强学习(RL)培训环境。我们提出了一个几何观点,可以得出解决此问题的解决方案。具体而言,我们提出了VGS-IL(视觉几何技能模仿学习),这是一种端到端的几何学参数概念概念推理方法,以推断人类演示视频框架的全球一致的几何特征关联规则。我们表明,学习一个几何学参数的任务概念不是从图像像素中学习动作,而是在各种环境环境下向模仿者提供了可解释的和不变的表示。此外,这样的任务概念表示形式提供了与基于几何视觉控制器(例如Visual Servoing)的直接链接,从而使高级任务概念有效地映射到低级机器人动作。

We consider the problem of visual imitation learning without human supervision (e.g. kinesthetic teaching or teleoperation), nor access to an interactive reinforcement learning (RL) training environment. We present a geometric perspective to derive solutions to this problem. Specifically, we propose VGS-IL (Visual Geometric Skill Imitation Learning), an end-to-end geometry-parameterized task concept inference method, to infer globally consistent geometric feature association rules from human demonstration video frames. We show that, instead of learning actions from image pixels, learning a geometry-parameterized task concept provides an explainable and invariant representation across demonstrator to imitator under various environmental settings. Moreover, such a task concept representation provides a direct link with geometric vision based controllers (e.g. visual servoing), allowing for efficient mapping of high-level task concepts to low-level robot actions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源