论文标题
原子数据用于计算融合等离子体中激发氢原子的鲜明成分的强度
Atomic data for calculation of the intensities of Stark components of excited hydrogen atoms in fusion plasmas
论文作者
论文摘要
运动鲜明效应(MSE)光谱是一种独特的诊断工具,能够确定磁场的大小及其在融合等离子体核心中的方向。在25-1000 keV范围内的注射中性束中快速氢原子的主要激发通道是由于与质子和杂质离子的碰撞(例如,He $^{2+} $且杂质更重)。由于这种激发,在10 $^{13} $ -10 $^{14} $ cm $^{ - 3} $的粒子密度下,Stark多重的线强度不遵循统计期望(即,在相同的优质数量$ n $ n $ n $ n $ n $ n n $ n n ot Interportical tostistical proffictistions tostistical provations tostistions provestication tostistical provestication to start tossitions tostistical provestication to s统计上)。因此,任何现实的MSE光谱建模都必须包括相关的碰撞原子数据。在本文中,我们为抛物线状态在$ n $ = 3之内的激发横截面的一般表达方式提供了在运动诱导的电场和质子原子碰撞轴的方向之间的任意方向。计算利用使用原子轨道关闭耦合方法获得的密度矩阵,该方法可以应用于其他碰撞系统(例如He $^{2+} $,be $^{4+} $,C $^{6+} $等)。最终的横截面作为简单拟合,可以直接应用于光谱建模。为了说明,我们注意到,可以使用所提出的方法对红色和蓝移光谱成分之间的第一个经典阴极射线实验中检测到的不对称性进行定量研究。
Motional Stark effect (MSE) spectroscopy represents a unique diagnostic tool capable of determining the magnitude of the magnetic field and its direction in the core of fusion plasmas. The primary excitation channel for fast hydrogen atoms in injected neutral beams, with energy in the range of 25-1000 keV, is due to collisions with protons and impurity ions (e.g., He$^{2+}$ and heavier impurities). As a result of such excitation, at the particle density of 10$^{13}$-10$^{14}$ cm$^{-3}$, the line intensities of the Stark multiplets do not follow statistical expectations (i.e., the populations of fine-structure levels within the same principal quantum number $n$ are not proportional to their statistical weights). Hence, any realistic modeling of MSE spectra has to include the relevant collisional atomic data. In this paper we provide a general expression for the excitation cross sections in parabolic states within $n$=3 for an arbitrary orientation between the direction of the motion-induced electric field and the proton-atom collisional axis. The calculations make use of the density matrix obtained with the atomic orbital close coupling method and the method can be applied to other collisional systems (e.g., He$^{2+}$, Be$^{4+}$, C$^{6+}$, etc.). The resulting cross sections are given as simple fits that can be directly applied to spectral modeling. For illustration we note that the asymmetry detected in the first classical cathode ray experiments between the red- and blue-shifted spectral components can be quantitatively studied using the proposed approach.