论文标题
Feynman图及其最大切割的渐近分析
Asymptotic analysis of Feynman diagrams and their maximal cuts
论文作者
论文摘要
基于Landau奇点的Aspire计划和功率几何学方法,以揭示给定Feynman图在给定限制中渐近地评估所需的区域,还允许评估来自顶部方面的缩放。在这项工作中,我们将牛顿多层人群顶部的相等成分的比例与给定的Feynman积分的最大切割联系起来。因此,我们将两种独立的方法连接到了Feynman图的分析。
The ASPIRE program, which is based on the Landau singularities and the method of power geometry to unveil the regions required for the evaluation of a given Feynman diagram asymptotically in a given limit, also allows for the evaluation of scaling coming from the top facets. In this work, we relate the scaling having equal components of the top facets of the Newton polytope to the maximal cut of given Feynman integrals. We have therefore connected two independent approaches to the analysis of Feynman diagrams.