论文标题
景观分配:随机发电机和统计推断
Landscape allocation: stochastic generators and statistical inference
论文作者
论文摘要
在农业景观中,培养和半自然元素的组成和空间构型强烈影响物种动态,它们的相互作用和栖息地连接。为了允许景观结构分析和场景生成,我们在这里为由几何元素组成的真实景观开发统计工具,包括2D斑块,以及1D线性元素,例如树篱。我们设计了结合多重网络表示和Gibbs能量术语的生成随机模型,以表征土地使用类别的景观描述符的分布行为。我们为这类新型模型实施大都市杂物,以采样以参数控制的空间和时间模式(例如,几何,连接性,农作物旋转)的农业场景。基于伪的推理允许通过统计和功能验证研究实际景观中模型组件的相关性,这是通过比较观察到的景观和模拟景观之间的常用景观指标来实现的。安装在下层山谷(法国)子区域的模型表明与随机分配有很大的偏差,并且实际捕获了小规模的景观模式。总而言之,我们的统计模型方法提高了对农业生态系统的结构和功能方面的理解,并可以基于模拟的理论分析景观模式如何塑造生物学和生态过程。
In agricultural landscapes, the composition and spatial configuration of cultivated and semi-natural elements strongly impact species dynamics, their interactions and habitat connectivity. To allow for landscape structural analysis and scenario generation, we here develop statistical tools for real landscapes composed of geometric elements including 2D patches but also 1D linear elements such as hedges. We design generative stochastic models that combine a multiplex network representation and Gibbs energy terms to characterize the distributional behavior of landscape descriptors for land-use categories. We implement Metropolis-Hastings for this new class of models to sample agricultural scenarios featuring parameter-controlled spatial and temporal patterns (e.g., geometry, connectivity, crop-rotation). Pseudolikelihood-based inference allows studying the relevance of model components in real landscapes through statistical and functional validation, the latter achieved by comparing commonly used landscape metrics between observed and simulated landscapes. Models fitted to subregions of the Lower Durance Valley (France) indicate strong deviation from random allocation, and they realistically capture small-scale landscape patterns. In summary, our approach of statistical modeling improves the understanding of structural and functional aspects of agro-ecosystems, and it enables simulation-based theoretical analysis of how landscape patterns shape biological and ecological processes.