论文标题
静态疾病的Weyl半法的稳定性
Stability of Weyl semimetals with quasiperiodic disorder
论文作者
论文摘要
Weyl Semimetals是物质的阶段,其激发有效地用无质量的狄拉克·费米斯描述。它们的批判性质使得在存在无序的情况下不清楚这种阶段的持久性。我们提出一个定理,以确保在存在弱的准二氧化疾病的情况下半金属相的稳定性。证明依赖于相对论量子场理论描述与KAM理论中使用的数字理论属性相结合的微妙相互作用。
Weyl semimetals are phases of matter with excitations effectively described by massless Dirac fermions. Their critical nature makes unclear the persistence of such phase in presence of disorder. We present a theorem ensuring the stability of the semimetallic phase in presence of weak quasiperiodic disorder. The proof relies on the subtle interplay of the relativistic Quantum Field Theory description combined with number theoretical properties used in KAM theory.