论文标题

各向同性的cosserat壳模型,其中包括$ o(h^5)$的术语。第一部分:矩阵符号中的派生

The isotropic Cosserat shell model including terms up to $O(h^5)$. Part I: Derivation in matrix notation

论文作者

Ghiba, Ionel-Dumitrel, Bîrsan, Mircea, Lewintan, Peter, Neff, Patrizio

论文摘要

我们提出了一种新的几何非线性cosserat壳模型,该模型将效果纳入了$ o(h^5)$的顺序$ h $。我们遵循的方法是经过教育的8参数ANSATZ,用于三维弹性壳变形,并具有随之而来的分析厚度整合,这使我们以各种形式获得了完全二维方程的集合。我们使用Wryness张量的正交cartan分类给出了曲率能量的明确形式。此外,我们考虑了所有张量的矩阵表示在变化公式的推导中,因为当考虑存在问题时,这很方便,对于数值模拟而言,这也是优先的。逐步构造使我们能够对三维父母问题进行透明的近似。所得的6参数各向同性壳模型同时结合了膜,弯曲和曲率效应。 Cosserat Shell模型自然包含一个正交导演的框架,最后一个董事不一定与表面的正常相吻合。该旋转场与壳的变形耦合,并增强了众所周知的重新者 - 辛德林运动学(一个独立的导演),其面积内钻旋转旋转,其中包含在后续数值处理和存在方面的决定性。作为主要的新颖性,我们确定了Cosserat壳模型的本构系数,以依赖于壳的几何形状,而这些系数否则很难猜测。

We present a new geometrically nonlinear Cosserat shell model incorporating effects up to order $O(h^5)$ in the shell thickness $h$. The method that we follow is an educated 8-parameter ansatz for the three-dimensional elastic shell deformation with attendant analytical thickness integration, which leads us to obtain completely two-dimensional sets of equations in variational form. We give an explicit form of the curvature energy using the orthogonal Cartan-decomposition of the wryness tensor. Moreover, we consider the matrix representation of all tensors in the derivation of the variational formulation, because this is convenient when the problem of existence is considered, and it is also preferential for numerical simulations. The step by step construction allows us to give a transparent approximation of the three-dimensional parental problem. The resulting 6-parameter isotropic shell model combines membrane, bending and curvature effects at the same time. The Cosserat shell model naturally includes a frame of orthogonal directors, the last of which does not necessarily coincide with the normal of the surface. This rotation-field is coupled to the shell-deformation and augments the well-known Reissner-Mindlin kinematics (one independent director) with so-called in-plane drill rotations, the inclusion of which is a decisive for subsequent numerical treatment and existence proofs. As a major novelty, we determine the constitutive coefficients of the Cosserat shell model in dependence on the geometry of the shell which are otherwise difficult to guess.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源