论文标题

严格的上限用于离散的bak-sneppen模型

Rigorous upper bound for the discrete Bak-Sneppen model

论文作者

Volkov, Stanislav

论文摘要

修复[0,1] $中的一些$ p \和一个正整数$ n $。离散的bak-sneppen模型是Markov链,在带有周期性边界条件的长度$ n $零序列的空间上。在每一刻,最小元素(通常为零)以同样的概率选择,然后由独立的Bernoulli(P)随机变量与两个邻居一起替换。令$ν^{(n)}(p)$是该序列的元素等于此Markov链的固定分布下的元素的可能性。在[Barbay,Kenyon(2001)]中显示了$ν^{(n)}(p)\ to 1 $ as $ n \ to $ n \ to \ infty $时,$ p> 0.54 \ dots $;可惜的是,有证据不严格。 $ \ limsup的$ p \ in(0,p')$ p'in(0,p')$ for某些$ p'> 0 $的免费事实更难;最终在[Meester,Znamenski(2002)]中显示。 本说明的目的是通过证明$ν^{(n)}(p)\至1 $在$ p> 0.45 $时,提供了Barbay等人的严格证明以及改进。实际上,我们使用一些更精细的调整的方法也可以显示这一事实,即使所有$ p> 0.419533 $。

Fix some $p\in[0,1]$ and a positive integer $n$. The discrete Bak-Sneppen model is a Markov chain on the space of zero-one sequences of length $n$ with periodic boundary conditions. At each moment of time a minimum element (typically, zero) is chosen with equal probability, and is then replaced together with both its neighbours by independent Bernoulli(p) random variables. Let $ν^{(n)}(p)$ be the probability that an element of this sequence equals one under the stationary distribution of this Markov chain. It was shown in [Barbay, Kenyon (2001)] that $ν^{(n)}(p)\to 1$ as $n\to\infty$ when $p>0.54\dots$; the proof there is, alas, not rigorous. The complimentary fact that $\limsup ν^{(n)}(p)< 1$ for $p\in(0,p')$ for some $p'>0$ is much harder; this was eventually shown in [Meester, Znamenski (2002)]. The purpose of this note is to provide a rigorous proof of the result from Barbay et al, as well as to improve it, by showing that $ν^{(n)}(p)\to 1$ when $p>0.45$. In fact, our method with some finer tuning allows to show this fact even for all $p>0.419533$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源