论文标题

从动态轨迹的统计分析中重建有效潜力

Reconstruction of effective potential from statistical analysis of dynamic trajectories

论文作者

Nobakht, Ali Yousefzadi, Dyck, Ondrej, Lingerfelt, David B., Bao, Feng, Ziatdinov, Maxim, Maksov, Artem, Sumpter, Bobby G., Archibald, Richard, Jesse, Stephen, Kalinin, Sergei V., Law, Kody J. H.

论文摘要

微观方法的广泛融合是在表面和开放体积上的单个原子,分子和颗粒的原子和中尺度动力学中产生大量信息。对此类数据的分析需要统计框架将观察到的动态行为转换为材料的有效特性。在这里,我们开发了一种从观察到的轨迹中重建有效作用电位的随机重建方法。使用石墨烯中的硅空置缺陷作为模型,我们开发了一个统计框架,以从计算出的原子位移中重建自由能景观。

The broad incorporation of microscopic methods is yielding a wealth of information on atomic and mesoscale dynamics of individual atoms, molecules, and particles on surfaces and in open volumes. Analysis of such data necessitates statistical frameworks to convert observed dynamic behaviors to effective properties of materials. Here we develop a method for stochastic reconstruction of effective acting potentials from observed trajectories. Using the Silicon vacancy defect in graphene as a model, we develop a statistical framework to reconstruct the free energy landscape from calculated atomic displacements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源