论文标题

$ \ textbf {aut} _ {\ textbf {hol}}({\ bf \ mathbb c^n})$

A canonical embedding of $\textbf{Aut}_{\textbf{hol}}({\bf \mathbb C^n})$

论文作者

Braun, Francisco, Xavier, Frederico

论文摘要

组$ \ text {aut} _ {\ text {hol}}(\ mathbb c^n)$ by-biholomormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormormorphisms如果$ n = 1 $,则在较高的尺寸中,但在较高的大小对象中,它不是一个大的对象,它没有被明确描述。尽管当$ n> 1 $时涉及的复杂性,但令人惊讶的是,每个$ f \ in \ text {aut} _ {\ text {hol}}}(\ mathbb c^n)$在组内仅由两个数据,无限性和全球性质的数据唯一地确定。如果$ n = 1 $对于所有$ f $,此全局数据为零,然后仅由$ 1 $ -JET在$ 0 $确定,并且一个人恢复了$ \ text {aut} _ {\ text {hol text {hol}}}(\ mathbb c)= \ text = \ text {aff}(aff}(aff}(aff}(aftbb c))我们的主要结果被表述为$ \ text {aut} _ {\ text {hol}}}(\ Mathbb c^n)$的规范嵌入的存在,也从$ \ text {aut} _ {aut} _ {al text {hol}} {$ n)的$ \ text {aut} _ $ n)的自然候选人中挑选了自然候选。

The group $\text{Aut}_{\text{hol}}(\mathbb C^n)$ of self-biholomorphisms of $\mathbb C^n$ consists of affine maps if $n=1$, but in higher dimensions it is a large object that has not been described explicitly. Despite the intricacies involved when $n>1$, surprisingly every $F\in \text{Aut}_{\text{hol}}(\mathbb C^n)$ is uniquely determined inside the group by only two data, of infinitesimal and global nature: the $1$-jet of $F$ at $0$, and the complex Hessian of a certain plurisubharmonic function associated to $F$. If $n=1$ this global datum is zero for all $F$, which is then determined solely by its $1$-jet at $0$, and one recovers $\text{Aut}_{\text{hol}}(\mathbb C)= \text{Aff}(\mathbb C)\cong \mathbb C \times \mathbb C^{*}$. Our main result, formulated as the existence of a canonical embedding of $ \text{Aut}_{\text{hol}} ( \mathbb C^n)$, also singles out a natural candidate for moduli space of $ \text{Aut}_{\text{hol}} ( \mathbb C^n)$, for all $n>1$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源