论文标题
与Cherenkov望远镜阵列II对狭窄的seyfert 1星系的伽马射线观察的前景。在宽线区域辐射场中吸收伽马 - 伽马
Prospects for gamma-ray observations of narrow-line Seyfert 1 galaxies with the Cherenkov Telescope Array II. Gamma-gamma absorption in the broad-line region radiation fields
论文作者
论文摘要
伽马射线发射窄线Seyfert 1($γ$ -NLS1)星系可能具有相对较低的质量黑洞(10 $^6 $ -10 $^8 $^8 $ m $ _ {\ odot} $),靠近Eddington限制,并与他们的sibling siebling sources flats flats pecterspectrum pectionrum pecterrum quasasars共享许多特征。尽管在MEV-GEV频段中发现了它们,但在非常高的能量带中从未见过,当前具有当前成像大气Cherenkov望远镜(IACTS)的能量带中。因此,它们是下一代IACT的关键目标,即Cherenkov望远镜阵列(CTA)。在先前的工作中,我们通过广泛的模拟选择了前瞻性CTA检测的最佳候选者(SBS 0846 $+$ 513,PMN J0948 $+$ 0022和PKS 1502 $+$+$+$ 036),同时考虑了额外的启动的影响(在30 GAR)和额外的效果中,以及30 GAR的效果),以及30 GAR),以及GAR),以及GAR的效果),以及GAR),以及GAR的效果), $γ$ -rays。在这项工作中,我们通过采用更现实的宽线区域(BLR)吸收模型来模拟这三个来源的光谱。特别是,我们将BLR辐射场的$γ$ - $γ$吸收的详细处理是$γ$ -Ray发射区域的位置的函数,并从观测约束中推断出参数。我们发现,由于能量范围范围及其敏感性,CTA特别适合将$γ$ -RARE的发射区域定位在$γ$ -NLS1中。特别是,CTA不仅能够区分BLR内部或外部的$γ$ ray发射区域,还可以区分BLR内部的位置。
Gamma-ray emitting narrow-line Seyfert 1 ($γ$-NLS1) galaxies possibly harbour relatively low-mass black holes (10$^6$-10$^8$ M$_{\odot}$) accreting close to the Eddington limit, and share many characteristics with their sibling sources, flat-spectrum radio quasars. Although they have been detected in the MeV--GeV band with Fermi-LAT, they have never been seen in the very high energy band with current imaging atmospheric Cherenkov telescopes (IACTs). Thus, they are key targets for the next-generation IACT, the Cherenkov Telescope Array (CTA). In a previous work we selected, by means of extensive simulations, the best candidates for a prospective CTA detection (SBS 0846$+$513, PMN J0948$+$0022, and PKS 1502$+$036) taking into account the effects of both the intrinsic absorption (approximated with a cut-off at 30 GeV), and the extra-galactic background light on the propagation of $γ$-rays. In this work we simulate the spectra of these three sources by adopting more realistic broad-line region (BLR) absorption models. In particular, we consider the detailed treatment of $γ$-$γ$ absorption in the radiation fields of the BLR as a function of the location of the $γ$-ray emission region with parameters inferred from observational constraints. We find that, due to the energy range extent and its sensitivity, CTA is particularly well suited to locate the $γ$-ray emitting region in $γ$-NLS1. In particular CTA will be able not only to distinguish whether the $γ$-ray emitting region is located inside or outside the BLR, but also where inside the BLR it may be.