论文标题

KAM估算耗散标准图

KAM estimates for the dissipative standard map

论文作者

Calleja, Renato, Celletti, Alessandra, de la Llave, Rafael

论文摘要

从KAM理论的开头,人们已经意识到,其对现实问题的适用性取决于对允许扰动大小的定量估计。在本文中,我们介绍了非扰动制度中合并符号系统的准周期溶液的存在。我们记得,对于共同结合系统,找到解决方案还需要找到“漂移参数”。我们提供了有关参数值的解决方案的证明,该值与三个以上的数字一致,这些图数具有数值猜测的最佳值。 由于我们不控制圆形误差,因此对此处介绍的估计值的验证并不是完全严格的。然而,以不同精度运行的结果几乎没有差异。考虑到计算的高精度和估计值的简单性,这似乎不会影响结果。应进行全面验证,以实施间隔算术。 我们提供了近似解决方案,生成它们的高效算法(基于MPFR库的高精度)以及用于验证定理适用性的例程。

From the beginning of KAM theory, it was realized that its applicability to realistic problems depended on developing quantitative estimates on the sizes of the perturbations allowed. In this paper we present results on the existence of quasi-periodic solutions for conformally symplectic systems in non-perturbative regimes. We recall that, for conformally symplectic systems, finding the solution requires also to find a "drift parameter". We present a proof on the existence of solutions for values of the parameters which agree with more than three figures with the numerically conjectured optimal values. The verification of the estimates presented here is not completely rigorous since we do not control the round-off error. Nevertheless, running with different precision shows very little difference in the results. Given the high precision of the calculation and the simplicity of the estimates, this does not seem to affect the results. A full verification should be done implementing interval arithmetic. We make available the approximate solutions, the highly efficient algorithms to generate them (incorporating high precision based on the MPFR library) and the routines used to verify the applicability of the theorem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源