论文标题

量子等离子体中氢离子的基态能

Ground State Energy of Hydrogen-Like Ions in Quantum Plasmas

论文作者

Akbari-Moghanjoughi, M., Abdikian, Alireza, Phirouznia, Arash

论文摘要

使用渐近迭代方法(AIM),我们研究了完全退化的电子气体中氢和氦样静态离子的1s能级的变化。比较了半经典的Thomas-Fermi(TF),Shukla-Eliasson(SE)和校正后的Shukla-Eliasson(CSE)模型。值得注意的是,这些模型将稀释经典电子气体状态中的氢和氦样离子合并为真空水平。尽管在TF模型中,氢基态水平水平随着电子浓度的增加而单调地向连续限制,但在SE和CSE模型中,通过能量最小化的通用结合稳定谷中,在特定的电子浓度范围内发生了氢样离子,对于CSE,对于CSE而言,CSE模型在典型的集体中的电子浓度非常匹配。后来的稳定机制似乎是由于等离子体兴奋与金属密度状态下的费米长度尺度之间的相互作用所致。但是,在氦样离子的情况下,找不到这种稳定机制。 CSE模型与电子交换和相关效应的应用表明,CSE模型在自由电子假设的框架内定性地说明了元素金属的数量密度和晶格参数。根据静态电荷筛选的CSE模型,定义了简单的金属 - 绝缘体过渡标准。当前的研究可能进一步阐明金属化合物的形成和介电性能中的基本物理机制。

Using the asymptotic iteration method (AIM) we investigate the variation in the 1s energy levels of hydrogen and helium-like static ions in fully degenerate electron gas. The semiclassical Thomas-Fermi (TF), Shukla-Eliasson (SE) and corrected Shukla-Eliasson (cSE) models are compared. It is remarked that these models merge into the vacuum level for hydrogen and helium-like ions in the dilute classical electron gas regime. While in the TF model hydrogen ground state level lifts monotonically towards the continuum limit with increase in the electron concentration, in the SE and cSE models universal bound stabilization valley through the energy minimization occurs at a particular electron concentration range for the hydrogen-like ion which for cSE model closely matches the electron concentrations in typical metals. The later stabilizing mechanism appears to be due to the interaction between plasmon excitations and the Fermi lengthscales in metallic density regime. In the case of helium-like ions, however, no such stability mechanism is found. The application of cSE model with electron exchange and correlation effects reveals that cSE model qualitatively accounts for the number-density and lattice parameters of elemental metals within the framework of free electron assumption. According to the cSE model of static charge screening a simple metal-insulator transition criterion is defined. Current investigation may further elucidate the underlying physical mechanisms in the formation and dielectric properties of metallic compounds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源