论文标题

实用的贝叶斯优化与条件变量的目标

Practical Bayesian Optimization of Objectives with Conditioning Variables

论文作者

Pearce, Michael, Klaise, Janis, Groves, Matthew

论文摘要

贝叶斯优化是一类基于数据有效模型的算法,通常集中于全局优化。我们考虑了一个更普遍的情况,即用户面临多个问题,每个问题都需要在状态变量上进行优化,例如,给定一系列患者分布的城市,我们优化了以患者分布为条件的救护车地点。给定CIFAR-10的分区,我们为每个分区优化了CNN超参数。跨目标的相似性以两种方式提高了每个目标的优化:通过跨目标进行数据共享建模,以及通过量化一个目标上的单个点如何为所有目标提供好处,从而通过数据共享进行建模。为此,我们提出了一个条件优化的框架:CONBO。这可以建立在一系列采集功能之上,我们提出了新的混合知识梯度采集功能。所得的方法是直观的,理论上是与最近发表的一系列问题上发表的作品相似或明显更好的,并且很容易平行以收集一批点。

Bayesian optimization is a class of data efficient model based algorithms typically focused on global optimization. We consider the more general case where a user is faced with multiple problems that each need to be optimized conditional on a state variable, for example given a range of cities with different patient distributions, we optimize the ambulance locations conditioned on patient distribution. Given partitions of CIFAR-10, we optimize CNN hyperparameters for each partition. Similarity across objectives boosts optimization of each objective in two ways: in modelling by data sharing across objectives, and also in acquisition by quantifying how a single point on one objective can provide benefit to all objectives. For this we propose a framework for conditional optimization: ConBO. This can be built on top of a range of acquisition functions and we propose a new Hybrid Knowledge Gradient acquisition function. The resulting method is intuitive and theoretically grounded, performs either similar to or significantly better than recently published works on a range of problems, and is easily parallelized to collect a batch of points.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源