论文标题
良好的超浮肿超新星祖细胞的前爆炸前质量分布和大旋转相关性的新证据
The Pre-Explosion Mass Distribution of Hydrogen-Poor Superluminous Supernova Progenitors and New Evidence for a Mass-Spin Correlation
论文作者
论文摘要
尽管迹象表明超浮肿的超新星(SLSNE)起源于庞大的祖细胞,但迄今为止,缺乏统一分析的统计样本已经阻止了祖细胞质量分布的详细观点。在这里,我们介绍并分析了根据62个事件的统一建模的光曲线确定的氢贫民SLSN祖细胞的前探索质量分布。我们使用以前的作品中介绍的磁光光曲线模型(并使用名义中子星形残留质量)来概括每个事件的弹射质量后期。由此产生的分布跨越$ 3.6-40 $ m $ _ {\ odot} $,较低的质量下降急剧下降,并且最适合由$ {\ rm d} n/{\ rm dlog} m \ propto M^{\ rm d} N/{\ rm dlog} m^propto m^{ - 0.41 \ pm 0.06} $ 3.6 $ 3.6-8.6-8.6-8.6-8.6-8.6-8.6-8.6-8.6-8.6-8.6-8.6-8.6-8.6-8.6-8.6-8.6-8.6 $ r $ \ propto m^{ - 1.26 \ pm 0.06} $ at $ 8.6-40 $ m $ _ {\ odot} $。我们发现观察性选择效果无法解释分布的形状。相对于IB/C型SNE,SLSN质量分布扩展到更大的质量,并且具有不同的幂律形状,这可能表明磁体的形成会使更大的恒星爆炸,因为某些旋转能量会加速喷射。将SLSN分布与单颗星和二进制星级演化模型的预测进行比较,我们发现金属性的二进制模型$ Z \ Lessim 1/3 $ z $ _ {\ odot} $最好能够与SLSNE的低金属环境的偏好相结合。最后,我们发现了探索前质量和磁性初始自旋时期之间的相关性,那里的SLSNE的旋转较慢,这种趋势与快速旋转的碳氧气恒星模型中明显的角动量转运的影响广泛一致。
Despite indications that superluminous supernovae (SLSNe) originate from massive progenitors, the lack of a uniformly analyzed statistical sample has so far prevented a detailed view of the progenitor mass distribution. Here we present and analyze the pre-explosion mass distribution of hydrogen-poor SLSN progenitors as determined from uniformly modelled light curves of 62 events. We construct the distribution by summing the ejecta mass posteriors of each event, using magnetar light curve models presented in our previous works (and using a nominal neutron star remnant mass). The resulting distribution spans $3.6-40$ M$_{\odot}$, with a sharp decline at lower masses, and is best fit by a broken power law described by ${\rm d}N/{\rm dlog}M \propto M^{-0.41 \pm 0.06}$ at $3.6-8.6$ M$_{\odot}$ and $\propto M^{-1.26 \pm 0.06}$ at $8.6-40$ M$_{\odot}$. We find that observational selection effects cannot account for the shape of the distribution. Relative to Type Ib/c SNe, the SLSN mass distribution extends to much larger masses and has a different power-law shape, likely indicating that the formation of a magnetar allows more massive stars to explode as some of the rotational energy accelerates the ejecta. Comparing the SLSN distribution with predictions from single and binary star evolution models, we find that binary models for a metallicity of $Z\lesssim 1/3$ Z$_{\odot}$ are best able to reproduce its broad shape, in agreement with the preference of SLSNe for low metallicity environments. Finally, we uncover a correlation between the pre-explosion mass and the magnetar initial spin period, where SLSNe with low masses have slower spins, a trend broadly consistent with the effects of angular momentum transport evident in models of rapidly-rotating carbon-oxygen stars.