论文标题
在压缩下的结构过渡,金属化和超导性PDS $ _2 $
Structural transition, metallization and superconductivity in quasi 2D layered PdS$_2$ under compression
论文作者
论文摘要
基于第一原理的模拟和计算,我们探索了在单轴应力和静水压力下准2D层次PDS2的晶体结构,电子结构和传输特性的演变。 PD离子的协调在PDS2的结构过渡,电子结构和运输特性中起着至关重要的作用。在单轴压缩应力下揭示了一种有趣的铁弹性相变,该过渡均揭示出源于不寻常的PDS4方形平面配位的键重建。相比之下,在静水压力下,分层结构转换为3D立方黄铁矿型结构。与实验性的PDS2型结构在中间压力范围内与立方黄铁矿型结构的实验性共存相反,我们预测压缩诱导的中间相显示了与环境相相同的结构对称性,除了尖锐的合同套管固定剂。 PD离子的配位环境在中间阶段已经从平面平面变为扭曲的八面体,从而导致带宽拓宽和轨道选择性金属化。另外,超导性来自立方黄铁矿型结构受保护的拓扑结构线状态。 PDS2中结构过渡,电子结构和运输特性之间的强相关性提供了一个平台,以研究晶体结构与运输行为之间相互作用的基本物理,以及不同阶段之间的竞争。
Based on first-principles simulations and calculations, we explore the evolution of crystal structure, electronic structure and transport properties of quasi 2D layered PdS2 under uniaxial stress and hydrostatic pressure. The coordination of the Pd ions plays crucial roles in the structural transition, electronic structure and transport properties of PdS2. An interesting ferroelastic phase transition with lattice reorientation is revealed under uniaxial compressive stress, which originates from the bond reconstructions of the unusual PdS4 square-planar coordination. By contrast, the layered structure transforms to 3D cubic pyrite-type structure under hydrostatic pressure. In contrast to the experimental proposed coexistence of layered PdS2-type structure with cubic pyrite-type structure at intermediate pressure range, we predict that the compression-induced intermediate phase showing the same structural symmetry with the ambient phase, except of sharply contracted interlayer-distances. The coordination environments of the Pd ions have changed from square-planar to distorted octahedra in the intermediate phase, which results in the bandwidth broaden and orbital-selective metallization. In addition, the superconductivity comes from the cubic pyrite-type structure protected topological nodal-line states. The strong correlations between structural transition, electronic structure and transport properties in PdS2 provide a platform to study the fundamental physics of the interplay between crystal structure and transport behavior, and the competition between diverse phases.