论文标题

所有形状和大小的随机平滑

Randomized Smoothing of All Shapes and Sizes

论文作者

Yang, Greg, Duan, Tony, Hu, J. Edward, Salman, Hadi, Razenshteyn, Ilya, Li, Jerry

论文摘要

随机平滑是当前最新防御的防御,具有可证明的鲁棒性,以$ \ ell_2 $对抗性攻击。许多作品已经为其他指标设计了新的随机平滑方案,例如$ \ ell_1 $或$ \ ell_ \ infty $;但是,需要大量的努力来获得这种新的保证。这就提出了一个问题:我们可以找到一种随机平滑的一般理论吗? 我们提出了一个新的框架,用于设计和分析随机平滑方案,并在实践中验证其有效性。我们的理论贡献是:(1)我们证明,对于“最佳”的适当概念,对于任何“良好”规范的最佳平滑分布都具有Norm的 *Wulff Crystal *给出的水平集; (2)我们提出了两种新颖的和互补的方法,用于衍生出任何平滑分布的可证明强大的半径; (3)我们通过 *Banach Space Cotypes *的理论显示了当前随机平滑技术的基本限制。通过组合(1)和(2),我们在标准数据集中显着提高了$ \ ell_1 $的最先进的准确性。同时,我们使用(3)仅在随机输入扰动下仅标签统计信息,随机平滑无法实现非平凡的认证准确性,而不是$ \ ell_p $ -norm $ω(\ min(1,d^{\ frac {\ frac {1}} {p} {p} {p} - \ frac {1} $ dim;我们在github.com/tonyduan/rs4a中提供代码。

Randomized smoothing is the current state-of-the-art defense with provable robustness against $\ell_2$ adversarial attacks. Many works have devised new randomized smoothing schemes for other metrics, such as $\ell_1$ or $\ell_\infty$; however, substantial effort was needed to derive such new guarantees. This begs the question: can we find a general theory for randomized smoothing? We propose a novel framework for devising and analyzing randomized smoothing schemes, and validate its effectiveness in practice. Our theoretical contributions are: (1) we show that for an appropriate notion of "optimal", the optimal smoothing distributions for any "nice" norms have level sets given by the norm's *Wulff Crystal*; (2) we propose two novel and complementary methods for deriving provably robust radii for any smoothing distribution; and, (3) we show fundamental limits to current randomized smoothing techniques via the theory of *Banach space cotypes*. By combining (1) and (2), we significantly improve the state-of-the-art certified accuracy in $\ell_1$ on standard datasets. Meanwhile, we show using (3) that with only label statistics under random input perturbations, randomized smoothing cannot achieve nontrivial certified accuracy against perturbations of $\ell_p$-norm $Ω(\min(1, d^{\frac{1}{p} - \frac{1}{2}}))$, when the input dimension $d$ is large. We provide code in github.com/tonyduan/rs4a.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源