论文标题

一种有效的强大方法,可以对电动汽车聚合器的日期运行

An Efficient Robust Approach to the Day-ahead Operation of an Aggregator of Electric Vehicles

论文作者

Porras, Álvaro, Fernández-Blanco, Ricardo, Morales, Juan M., Pineda, Salvador

论文摘要

电动汽车(EV)的日益增长的使用可能会阻碍其整合到电力系统中,以及由于与驾驶方式相关的内在随机性,因此它们的有效操作。在这项工作中,我们假设一个利润 - 磁化剂EV-Aggregator参与日期的电力市场。聚合器解释了每个单独的EV的技术方面及其驾驶模式的不确定性。我们提出了一种层次优化方法来表示该聚合器的决策。高层对利润效果量聚合器在EV-Fleet操作上的决策进行了建模,而一系列的低级问题则根据电池排干和与市场的能量交换来计算最差的案例电动汽车可用性概况。然后,考虑到下层问题的约束矩阵及其凸度的约束矩阵,可以将这个问题等效地转换为混合企业的线性单级等效物。最后,我们与随机和确定性模型的结果相比,彻底分析了分层模型的好处。

The growing use of electric vehicles (EVs) may hinder their integration into the electricity system as well as their efficient operation due to the intrinsic stochasticity associated with their driving patterns. In this work, we assume a profit-maximizer EV-aggregator who participates in the day-ahead electricity market. The aggregator accounts for the technical aspects of each individual EV and the uncertainty in its driving patterns. We propose a hierarchical optimization approach to represent the decision-making of this aggregator. The upper level models the profit-maximizer aggregator's decisions on the EV-fleet operation, while a series of lower-level problems computes the worst-case EV availability profiles in terms of battery draining and energy exchange with the market. Then, this problem can be equivalently transformed into a mixed-integer linear single-level equivalent given the totally unimodular character of the constraint matrices of the lower-level problems and their convexity. Finally, we thoroughly analyze the benefits of the hierarchical model compared to the results from stochastic and deterministic models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源