论文标题
混乱的相位同步和振荡器网络中用于对象选择的异步
Chaotic Phase Synchronization and Desynchronization in an Oscillator Network for Object Selection
论文作者
论文摘要
对象选择是指提取感兴趣的对象的机制,同时忽略给定的视觉场景中的其他对象和背景。对于许多计算机视觉和图像分析技术来说,这是一个基本问题,对于人造视觉系统来说,它仍然是一项艰巨的任务。混沌相同步发生在涉及几乎相同的动力学系统的情况下,这意味着系统之间的相位差异在整个时间内保持界限,而它们的幅度保持混乱,可能是不相关的。据信相位同步不是完全同步,而是大脑神经整合的一种机制。在本文中,提出了对象选择模型。网络中代表给定场景中显着对象的网络中的振荡器是相同步的,而背景对象没有相位同步。这样,可以提取显着对象。在此模型中,还引入了一种转移机制,以将注意力从一个对象转变为另一个对象。计算机模拟显示,该模型产生的结果与自然视觉系统中观察到的结果相似。
Object selection refers to the mechanism of extracting objects of interest while ignoring other objects and background in a given visual scene. It is a fundamental issue for many computer vision and image analysis techniques and it is still a challenging task to artificial visual systems. Chaotic phase synchronization takes place in cases involving almost identical dynamical systems and it means that the phase difference between the systems is kept bounded over the time, while their amplitudes remain chaotic and may be uncorrelated. Instead of complete synchronization, phase synchronization is believed to be a mechanism for neural integration in brain. In this paper, an object selection model is proposed. Oscillators in the network representing the salient object in a given scene are phase synchronized, while no phase synchronization occurs for background objects. In this way, the salient object can be extracted. In this model, a shift mechanism is also introduced to change attention from one object to another. Computer simulations show that the model produces some results similar to those observed in natural vision systems.