论文标题

DFTPY:无轨道DFT模拟的高效且面向对象的平台

DFTpy: An efficient and object-oriented platform for orbital-free DFT simulations

论文作者

Shao, Xuecheng, Jiang, Kaili, Mi, Wenhui, Genova, Alessandro, Pavanello, Michele

论文摘要

在计算机材料中,Kohn-Sham DFT的计算复杂性阻碍了材料的设计,该计算复杂性随系统的大小而立方体缩放。由于新一代动能密度功能(KEDFS)的发展,现在可以成功地应用于大型的半导体和诸如量子点和金属簇之类的有限有限系统。在这项工作中,我们介绍了DFTPY,这是一种完全在Python 3中编写的开源软件,并将计算昂贵的操作外包给第三方模块,例如Numpy和Scipy。当快速模拟进行顺序时,DFTPY从Pyfftw中利用快速傅立叶变换(FFT)。新代,非本地和密度依赖性内核KEDF通过使用线性花样和其他方法来使快速核构建通过线性花样和其他方法来效率。我们通过解决在单个CPU上计算的百万个原子系统的电子结构来展示DFTPY。 Python 3实现是面向对象的,为轻松实现新功能打开了大门。例如,我们提供了一个时间依赖的OFDFT实现(流体动力DFT),我们用来计算小型金属簇的光谱,从定性地恢复了时间依赖时间的Kohn-Sham DFT结果。 Python代码库可以轻松实现API。我们展示了DFTPY和ASE的组合,用于液体金属的分子动力学模拟(NVT)。 DFTPY根据MIT许可发布。

In silico materials design is hampered by the computational complexity of Kohn-Sham DFT, which scales cubically with the system size. Owing to the development of new-generation kinetic energy density functionals (KEDFs), orbital-free DFT (OFDFT, a linear-scaling method) can now be successfully applied to a large class of semiconductors and such finite systems as quantum dots and metal clusters. In this work, we present DFTpy, an open source software implementing OFDFT written entirely in Python 3 and outsourcing the computationally expensive operations to third-party modules, such as NumPy and SciPy. When fast simulations are in order, DFTpy exploits the fast Fourier transforms (FFTs) from PyFFTW. New-generation, nonlocal and density-dependent-kernel KEDFs are made computationally efficient by employing linear splines and other methods for fast kernel builds. We showcase DFTpy by solving for the electronic structure of a million-atom system of aluminum metal which was computed on a single CPU. The Python 3 implementation is object-oriented, opening the door to easy implementation of new features. As an example, we present a time-dependent OFDFT implementation (hydrodynamic DFT) which we use to compute the spectra of small metal cluster recovering qualitatively the time-dependent Kohn-Sham DFT result. The Python code base allows for easy implementation of APIs. We showcase the combination of DFTpy and ASE for molecular dynamics simulations (NVT) of liquid metals. DFTpy is released under the MIT license.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源