论文标题
MGO $^+$对甲烷的热激活:温度依赖性动力学,反应性分子动力学模拟和统计建模
Thermal Activation of Methane by MgO$^+$: Temperature Dependent Kinetics, Reactive Molecular Dynamics Simulations and Statistical Modeling
论文作者
论文摘要
MGO $^ + $ + CH $ _4 $的动力学使用可变离子源,可调节的选择离子流管(Vista-Sift)设备进行了实验研究,从300 $ -600 k $ 600 k,并通过运行和分析反应性原子学模拟来计算。速率和产品分支分数是根据温度的函数确定的。反应的速率为$ k = 5.9 \ pm 1.5 10^{ - 10}(t/300 $ k $) MGOH $^+$在所有温度下都是主要产品,但是观察到氧气原子转移到形成甲醇的Mg $^+$,其产品分支分数为0.08 \ pm 0.03(t / 300 $ k $)^{-0.8 \ pm 0.7} $。反应性分子动力学模拟使用反应力场以及神经网络收益率系数低约一个数量级。对费率的低估可追溯到过渡状态[mgoch $ _4 $] $^+$的多差。温度依赖性动力学的统计模型提供了对反应性潜在表面的进一步见解。发现速率限制步骤与C-H键的四个中心激活一致,这与先前的计算一致。该产品分支的建模是作为在限制过渡状态后直接中间插入中间体的解离,并且穿越与甲基迁移相对应的过渡状态,导致MG-CH $ _3 $ oh $^+$复合物,尽管只有相对于分离的MGOH $^$+$+$+CH $+CH $+CH $+CH $ ______________________3 $ oh $^+$ complect。讨论了一种替代性的非统计机制,通过该机制,在潜在表面的转变后分叉可以使反应可以直接从四个以四个以四个为中心的TS进行到MG-CH $ _3 $ _3 $ oh $^+$复合物,从而可以在产品频道之间进行更强大的竞争。
The kinetics of MgO$^+$ + CH$_4$ was studied experimentally using the variable ion source, temperature adjustable selected ion flow tube (VISTA-SIFT) apparatus from 300 $-$ 600 K and computationally by running and analyzing reactive atomistic simulations. Rates and product branching fractions were determined as a function of temperature. The reaction proceeded with a rate of $k = 5.9 \pm 1.5 10^{-10}(T/300 $ K$)^{-0.5 \pm 0.2}$ cm$^3$ s$^{-1}$. MgOH$^+$ was the dominant product at all temperatures, but Mg$^+$, the co-product of oxygen-atom transfer to form methanol, was observed with a product branching fraction of $0.08 \pm 0.03 (T / 300 $ K$)^{-0.8 \pm 0.7}$. Reactive molecular dynamics simulations using a reactive force field, as well as a neural network yield rate coefficients about one order of magnitude lower. This underestimation of the rates is traced back to the multireference character of the transition state [MgOCH$_4$]$^+$. Statistical modeling of the temperature-dependent kinetics provides further insight into the reactive potential surface. The rate limiting step was found to be consistent with a four-centered activation of the C-H bond, consistent with previous calculations. The product branching was modeled as a competition between dissociation of an insertion intermediate directly after the rate-limiting transition state, and traversing a transition state corresponding to a methyl migration leading to a Mg-CH$_3$OH$^+$ complex, though only if this transition state is stabilized significantly relative to the dissociated MgOH$^+$ + CH$_3$ product channel. An alternative non-statistical mechanism is discussed, whereby a post-transition state bifurcation in the potential surface could allow the reaction to proceed directly from the four-centered TS to the Mg-CH$_3$OH$^+$ complex thereby allowing a more robust competition between the product channels.