论文标题

加权L2空间中有限的希尔伯特变换

Finite Hilbert Transform in Weighted L2 Spaces

论文作者

You, Jason

论文摘要

获得了加权希尔伯特变换的几种新特性。如果MU为零,则会得出两个类似Plancherel的方程和各向同性特性。对于MU是实际数字,得出了强制性,并构建了两个迭代序列以找到反转。所提出的迭代序列适用于带有| ETA | <pi/4的纯假想常数mu = i*eta的情况。对于MU = 0.0和3.0,我们使用有限的Hilbert Transform的Chebyshev系列表示,介绍了计算机模拟结果。本文中的结果对几种成像应用中的半扫描很有用。

Several new properties of weighted Hilbert transform are obtained. If mu is zero, two Plancherel-like equations and the isotropic properties are derived. For mu is real number, a coerciveness is derived and two iterative sequences are constructed to find the inversion. The proposed iterative sequences are applicable to the case of pure imaginary constant mu=i*eta with |eta|<pi/4 . For mu=0.0 and 3.0 , we present the computer simulation results by using the Chebyshev series representation of finite Hilbert transform. The results in this paper are useful to the half scan in several imaging applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源