论文标题
DVNET:用于大规模神经血管重建的记忆效率的三维CNN
DVNet: A Memory-Efficient Three-Dimensional CNN for Large-Scale Neurovascular Reconstruction
论文作者
论文摘要
脑微体系结构的图对于理解神经功能和行为至关重要,包括由神经退行性疾病等慢性疾病引起的改变。诸如刀边扫描显微镜(KESM)之类的技术为整个器官成像以亚细胞分辨率提供了潜力。但是,多稳定的数据大小使手动注释不切实际和自动分割具有挑战性。密集的包装细胞与互连的微血管网络相结合是当前分割算法的挑战。高通量显微镜数据的庞大大小需要快速且在很大程度上无监督的算法。在本文中,我们研究了针对像素语义分割的完全趋化,深层和密集的编码编码器。使用跳过连接可以减轻经常遇到的深度和密集网络的过度记忆复杂性,从而减少参数,并使先前的体系结构的性能显着提高。提出的网络为应用于开源基准的语义分割问题提供了出色的性能。我们最终展示了我们的细胞和微血管分割网络,从而实现了器官尺度神经血管分析的定量指标。
Maps of brain microarchitecture are important for understanding neurological function and behavior, including alterations caused by chronic conditions such as neurodegenerative disease. Techniques such as knife-edge scanning microscopy (KESM) provide the potential for whole organ imaging at sub-cellular resolution. However, multi-terabyte data sizes make manual annotation impractical and automatic segmentation challenging. Densely packed cells combined with interconnected microvascular networks are a challenge for current segmentation algorithms. The massive size of high-throughput microscopy data necessitates fast and largely unsupervised algorithms. In this paper, we investigate a fully-convolutional, deep, and densely-connected encoder-decoder for pixel-wise semantic segmentation. The excessive memory complexity often encountered with deep and dense networks is mitigated using skip connections, resulting in fewer parameters and enabling a significant performance increase over prior architectures. The proposed network provides superior performance for semantic segmentation problems applied to open-source benchmarks. We finally demonstrate our network for cellular and microvascular segmentation, enabling quantitative metrics for organ-scale neurovascular analysis.