论文标题
nilpotent Lie组的普遍流动流
Generalized Ricci flow on nilpotent Lie groups
论文作者
论文摘要
我们根据M. Garcia-Fernandez和J. Streets的定义来定义广义RICCI流的孤儿。然后,我们在一个简单相互连接的nilpotent Lie群体上定义了一个左行Dorfman支架的流量家庭,概括了nilpotent Lie括号的支架流,以一种可能使这个新的家族有用的新家族,可用于研究一般的几何学水平流,例如一般的RICCI RICCI Flow。我们提供了海森堡集团上这两种结构的明确例子。我们还讨论了海森伯格集团上广义RICCI流的解决方案。
We define solitons for the generalized Ricci flow on an exact Courant algebroid, building on the definitions of M. Garcia-Fernandez and J. Streets. We then define a family of flows for left-invariant Dorfman brackets on an exact Courant algebroid over a simply connected nilpotent Lie group, generalizing the bracket flows for nilpotent Lie brackets in a way that might make this new family of flows useful for the study of generalized geometric flows, such as the generalized Ricci flow. We provide explicit examples of both constructions on the Heisenberg group. We also discuss solutions to the generalized Ricci flow on the Heisenberg group.