论文标题

自行车攻击被认为有害:量化广泛密码长度泄漏的损坏

Bicycle Attacks Considered Harmful: Quantifying the Damage of Widespread Password Length Leakage

论文作者

Harsha, Benjamin, Morton, Robert, Blocki, Jeremiah, Springer, John, Dark, Melissa

论文摘要

我们通过加密流量(即自行车攻击)检查了密码长度泄漏的问题。我们旨在量化密码长度泄漏错误的普遍性以及对用户的潜在危害。在一项观察性研究中,我们发现Alexa前100个费率站点的{\ em Most}容易受到自行车攻击的影响,这意味着窃听的攻击者可以根据包含密码的加密数据包来推断密码的确切长度。我们讨论了几种方法,其中窃听攻击者可以将此密码长度与特定用户帐户(例如针对较小的用户组的有针对性的广告系列)联系起来,或者通过劫持较大规模广告系列的DNS劫持。接下来,我们使用决策理论模型来量化密码长度泄漏可能有助于攻击者破解用户密码的程度。在我们的分析中,我们考虑了三种不同级别的密码攻击者:黑客,犯罪和民族国家。在所有情况下,我们都会发现,知道每个用户密码长度的攻击者在不知道密码长度的情况下都会获得一个重要优势。作为本分析的一部分,我们还使用Blocki等人的差异私有算法发布了2016 LinkedIn漏洞的新差异密码频率数据集。 (NDSS 2016)保护用户帐户。 LinkedIn频率语料库基于超过1.7亿个密码,使其成为密码研究人员公开可用的最大频率语料库。虽然防御自行车攻击的防御很简单(即,确保密码在加密前始终填充密码),但我们讨论了组织在试图修补此漏洞时可能面临的几个实际挑战。我们主张有关如何处理密码字段的新的W3C标准,该标准有效地消除了大多数密码长度泄漏的实例。

We examine the issue of password length leakage via encrypted traffic i.e., bicycle attacks. We aim to quantify both the prevalence of password length leakage bugs as well as the potential harm to users. In an observational study, we find that {\em most} of the Alexa top 100 rates sites are vulnerable to bicycle attacks meaning that an eavesdropping attacker can infer the exact length of a password based on the length the encrypted packet containing the password. We discuss several ways in which an eavesdropping attacker could link this password length with a particular user account e.g., a targeted campaign against a smaller group of users or via DNS hijacking for larger scale campaigns. We next use a decision-theoretic model to quantify the extent to which password length leakage might help an attacker to crack user passwords. In our analysis, we consider three different levels of password attackers: hacker, criminal and nation-state. In all cases, we find that such an attacker who knows the length of each user password gains a significant advantage over one without knowing the password length. As part of this analysis, we also release a new differentially private password frequency dataset from the 2016 LinkedIn breach using a differentially private algorithm of Blocki et al. (NDSS 2016) to protect user accounts. The LinkedIn frequency corpus is based on over 170 million passwords making it the largest frequency corpus publicly available to password researchers. While the defense against bicycle attacks is straightforward (i.e., ensure that passwords are always padded before encryption), we discuss several practical challenges organizations may face when attempting to patch this vulnerability. We advocate for a new W3C standard on how password fields are handled which would effectively eliminate most instances of password length leakage.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源