论文标题
用于制备量子吉布斯状态的差异量子算法
A Variational Quantum Algorithm for Preparing Quantum Gibbs States
论文作者
论文摘要
吉布斯分布的准备是量子计算的重要任务。在某些类型的量子模拟中,这是必要的第一步,而进一步对于量子算法(例如量子玻尔兹曼训练)至关重要。尽管如此,由于所需的内存开销,大多数准备热状态的方法都不切实际地在近期量子计算机上实施。在这里,我们提出了一种基于最小化量子系统的自由能量的吉布斯状态的变异方法。使这种实用的关键见解是使用与对数的傅里叶序列近似值,该近似值允许通过一系列更简单的测量序列估算自由能的熵组件,这些测量值可以使用经典后处理。我们进一步表明,如果对可编程量子电路的差异参数的初始猜测足够接近全局优点,则这种方法对于在恒定误差内生成高温吉布斯状态是有效的。最后,我们以数值检查了该程序,并使用Trotterterized绝热状态制备作为ANSATZ来表明我们对五量汉密尔顿的方法的生存能力。
Preparation of Gibbs distributions is an important task for quantum computation. It is a necessary first step in some types of quantum simulations and further is essential for quantum algorithms such as quantum Boltzmann training. Despite this, most methods for preparing thermal states are impractical to implement on near-term quantum computers because of the memory overheads required. Here we present a variational approach to preparing Gibbs states that is based on minimizing the free energy of a quantum system. The key insight that makes this practical is the use of Fourier series approximations to the logarithm that allows the entropy component of the free-energy to be estimated through a sequence of simpler measurements that can be combined together using classical post processing. We further show that this approach is efficient for generating high-temperature Gibbs states, within constant error, if the initial guess for the variational parameters for the programmable quantum circuit are sufficiently close to a global optima. Finally, we examine the procedure numerically and show the viability of our approach for five-qubit Hamiltonians using Trotterized adiabatic state preparation as an ansatz.