论文标题
宽场的点传播功能建模,带有denoing自动编码器的小光圈望远镜
Point Spread Function Modelling for Wide Field Small Aperture Telescopes with a Denoising Autoencoder
论文作者
论文摘要
点扩展功能反映了光学望远镜的状态,对于数据后处理方法设计很重要。对于宽场小光圈望远镜,很难建模点扩散函数,因为它受到许多不同效果的影响,并且具有强烈的时间和空间变化。在本文中,我们建议使用一种深层神经网络的Denoising AutoCodeer来对宽场小光圈望远镜的点扩散函数进行建模。 Denoising AutoCododer是一种基于纯数据的点扩散函数建模方法,该方法使用来自真实观测值或数值模拟结果的校准数据作为点扩散函数模板。根据实际观察条件,将不同级别的随机噪声或畸变添加到点扩散函数模板中,从而使它们成为点扩散函数的实现,即模拟的恒星图像。然后,我们通过实现和模板的点扩展功能来训练Denoising自动编码器。训练后,Denoising自动编码器了解点扩散功能的流动空间,并可以将通过宽场小光圈望远镜获得的任何恒星图像映射到其点扩散函数,该功能可用于设计数据后处理或光学系统对齐方法。
The point spread function reflects the state of an optical telescope and it is important for data post-processing methods design. For wide field small aperture telescopes, the point spread function is hard to model, because it is affected by many different effects and has strong temporal and spatial variations. In this paper, we propose to use the denoising autoencoder, a type of deep neural network, to model the point spread function of wide field small aperture telescopes. The denoising autoencoder is a pure data based point spread function modelling method, which uses calibration data from real observations or numerical simulated results as point spread function templates. According to real observation conditions, different levels of random noise or aberrations are added to point spread function templates, making them as realizations of the point spread function, i.e., simulated star images. Then we train the denoising autoencoder with realizations and templates of the point spread function. After training, the denoising autoencoder learns the manifold space of the point spread function and can map any star images obtained by wide field small aperture telescopes directly to its point spread function, which could be used to design data post-processing or optical system alignment methods.