论文标题
$ u(\ Mathfrak Q)的换向子代理,最大超越学位
Commutative subalgebras of $U(\mathfrak q)$ of maximal transcendence degree
论文作者
论文摘要
We prove that the enveloping algebra $U(\mathfrak q)$ of a finite-dimensional Lie algebra $\mathfrak q$ contains a commutative subalgebra of the maximal possible transcendence degree $(\dim\mathfrak q+ \mathrm{ind}\,\mathfrak q)/2$.
We prove that the enveloping algebra $U(\mathfrak q)$ of a finite-dimensional Lie algebra $\mathfrak q$ contains a commutative subalgebra of the maximal possible transcendence degree $(\dim\mathfrak q+ \mathrm{ind}\,\mathfrak q)/2$.