论文标题

liouville量子重力中的度量球体积

Volume of metric balls in Liouville quantum gravity

论文作者

Ang, Morris, Falconet, Hugo, Sun, Xin

论文摘要

我们研究了liouville量子重力(LQG)中度量球的体积。自$γ\ in(0,2)$中,自Kahane(1985)和Molchan(1996)的早期工作以来,欧几里得球的LQG体积正好适用于$ p \ in( - \ infty,4/γ^2)$。在这里,我们证明了LQG量的LQG度量球允许所有有限的时刻。这回答了Gwynne和Miller的问题,并概括了Le Gall为Brownian Map获得的结果,即$γ= \ sqrt {8/3} $ case。我们利用这一刻来表明,在紧凑的设置上,$ r $的度量球的体积由$ r^{d_γ+o_r(1)} $给出,其中$d_γ$是LQG公制空间的尺寸。使用类似的技术,我们证明了来自公制球的Liouville Brownian运动的第一次退出时间。 Gwynne-Miller-Sheffield(2020)证明了$γ$ -LQG A.S.的度量测量空间结构当$γ= \ sqrt {8/3} $时,确定其保形结构;他们的论点和我们的估计产生了所有$γ\(0,2)$的结果。

We study the volume of metric balls in Liouville quantum gravity (LQG). For $γ\in (0,2)$, it has been known since the early work of Kahane (1985) and Molchan (1996) that the LQG volume of Euclidean balls has finite moments exactly for $p \in (-\infty, 4/γ^2)$. Here, we prove that the LQG volume of LQG metric balls admits all finite moments. This answers a question of Gwynne and Miller and generalizes a result obtained by Le Gall for the Brownian map, namely, the $γ= \sqrt{8/3}$ case. We use this moment bound to show that on a compact set the volume of metric balls of size $r$ is given by $r^{d_γ+o_r(1)}$, where $d_γ$ is the dimension of the LQG metric space. Using similar techniques, we prove analogous results for the first exit time of Liouville Brownian motion from a metric ball. Gwynne-Miller-Sheffield (2020) prove that the metric measure space structure of $γ$-LQG a.s. determines its conformal structure when $γ=\sqrt{8/3}$; their argument and our estimate yield the result for all $γ\in (0,2)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源