论文标题

来自符号和正交字符的确定点过程和应用程序

Determinantal point processes from symplectic and orthogonal characters and applications

论文作者

Betea, Dan

论文摘要

我们表明,Okounkov的Schur度量(在整数分区)的符号和正交性类似物是确定性的,具有显式相关内核。我们将其应用于证明某些有关toeplitz+Hankel和Fredholm决定因素的硼丁蛋白-Okounkov-gessel型结果; szegő型限制定理; Baik-Deift-Johansson型的边缘渐近和正交性类似物的渐近和正交类似物的渐近结果;以及对“几乎对称”分区支持的实际Poissonization Plancherel措施的类似结果。

We show that the symplectic and orthogonal character analogues of Okounkov's Schur measure (on integer partitions) are determinantal, with explicit correlation kernels. We apply this to prove certain Borodin-Okounkov-Gessel-type results concerning Toeplitz+Hankel and Fredholm determinants; a Szegő-type limit theorem; an edge Baik-Deift-Johansson-type asymptotical result for certain symplectic and orthogonal analogues of the poissonized Plancherel measure; and a similar result for actual poissonized Plancherel measures supported on "almost symmetric" partitions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源