论文标题

因子12的算法:生成在Plimpton 322片上雕刻的信息

The Algorithm of Factor 12: Generating the Information Carved on the Plimpton 322 Tablet

论文作者

Quiñonez, Fernando

论文摘要

Plimpton 322数据中代表的右三角形具有整数$(a,b,d)$,$ a <b <d $,通过检查我们提出的数据$ b = m \,q_ {m} $带有$ m,q_ {m,q_ {m} $阳性整数。通过这种方式,我们提出了一个新的数据驱动算法系列,以生成Plimpton-322平板电脑的全部内容。家庭的每种算法对应于捆绑因子或Makşarum$ m $的一个给定值。 $ M = 12 $的算法自然来自数据,并且完全是通过这项工作开发的。我们可以在十二个因子算法的框架中使用三个不同的方案生成完整的Plimpton 322表。最终,我们通过在一般算法中找到了$ m $的发现,我们可以找到所有毕达哥拉斯的三元组。

The right triangles represented in the Plimpton 322 data have integer sides $(a, b, d)$ with $a < b < d$, by inspecting the data we propose $b=M\,Q_{M}$ with $M,Q_{M}$ positive integers. In this way we present a new data-driven family of algorithms in order to generate the whole content of the Plimpton-322 tablet. Each algorithm of the family corresponds to one given value of the bundling factor or makşarum $M$. The algorithm with $M=12$ arise naturally from data and is developed entirely through this work. We could generate the complete Plimpton 322 table by using three different schemes in the framework of the twelve factor algorithm. Finally we found by varying $M$ in the general algorithm, we can be able to find all the Pythagorean Triples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源