论文标题
观察单光动力学的狄拉克锥运动
Observing Movement of Dirac Cones from Single-Photon Dynamics
论文作者
论文摘要
具有蜂窝结构的石墨烯,在理解物质的物理学方面至关重要,表现出与量子相对论现象具有异常不寻常的半量量子霍尔效应和非常规的电子光谱。特别是,石墨烯状结构可用于实现拓扑绝缘体,从而激发了一种内在的拓扑保护机制,具有强大的免疫力,以保持量子信息的连贯性。这些各种特殊的物理学来自狄拉克锥的独特特性,这些特性表现出高孔退化,无质量载体和带的线性相交。对狄拉克锥的实验观察通常以批量测量为重点是能量摩托车空间。最近,波浪函数和频带结构已被映射到光子系统中的真实空间中,并使柔性控制成为可能。在这里,我们展示了对不同双轴菌株在光子石墨烯中单光动力学的狄拉克锥运动的直接观察。通过动态检测边缘模式并提取数据包的扩散距离,并在单个单粒子注册上统计数据,在量子力学中共享同样的波颗粒性质精神,并通过动态检测边缘模式并提取数据包的扩散距离来确定狄拉克锥的运动。我们通过映射在动量空间中定义的频带结构来观察单光动力学的狄拉克锥体的结果,以及在真实空间中的直接观察方法,为理解量子状态的各种人工结构的方式铺平了道路。
Graphene with honeycomb structure, being critically important in understanding physics of matter, exhibits exceptionally unusual half-integer quantum Hall effect and unconventional electronic spectrum with quantum relativistic phenomena. Particularly, graphene-like structure can be used for realizing topological insulator which inspires an intrinsic topological protection mechanism with strong immunity for maintaining coherence of quantum information. These various peculiar physics arise from the unique properties of Dirac cones which show high hole degeneracy, massless charge carriers and linear intersection of bands. Experimental observation of Dirac cones conventionally focuses on the energy-momentum space with bulk measurement. Recently, the wave function and band structure have been mapped into the real-space in photonic system, and made flexible control possible. Here, we demonstrate a direct observation of the movement of Dirac cones from single-photon dynamics in photonic graphene under different biaxial strains. Sharing the same spirit of wave-particle nature in quantum mechanics, we identify the movement of Dirac cones by dynamically detecting the edge modes and extracting the diffusing distance of the packets with accumulation and statistics on individual single-particle registrations. Our results of observing movement of Dirac cones from single-photon dynamics, together with the method of direct observation in real space by mapping the band structure defined in momentum space, pave the way to understand a variety of artificial structures in quantum regime.