论文标题
用弱透明的多尺度计数来限制中微子质量
Constraining neutrino masses with weak-lensing multiscale peak counts
论文作者
论文摘要
大量中微子影响宇宙的背景演变以及结构的生长。能够建模这种效果并限制其群众的总和是现代宇宙学的主要挑战之一。通过LSST,WFIRST和EUCLID等下一代调查,弱化的宇宙学约束也将很快达到更高的精度。我们使用Massivenus仿真来得出中微子质量$M_ν$的总和,当今的总物质密度$ω_ {\ rm m} $以及在整理设置中的原始功率频谱归一化$ a _ {\ rm s} $。我们将镜头功率谱作为二阶统计数据,以及峰值计数作为从模拟产生的透镜收敛图上的高阶统计。我们通过采用小星(小波)滤波器和高斯过滤器的串联来研究多尺度过滤方法对宇宙学参数的影响。在这两种情况下,峰值计数的表现均优于功率谱在一组参数[$m_ν$,$ω_ {\ rm m} $,$ a _ {\ rm s} $]分别为63 $ \%$ \%$,40 $ \%$ \%$ \%$和72 $ \%时,当时使用$ $ $ $ $ $ \%$ \%$ \%$ \%\ \ \%$ \%\ \%$ \%\ \%$ \%\ \%$ \ \ \ \%多尺度高斯。更重要的是,我们表明,当使用多尺度方法时,加入功率谱和峰值并没有在仅考虑峰值上添加任何相关信息。尽管两个多尺度过滤器的行为都相似,但我们发现,使用星球滤波器,数据协方差矩阵中的大多数信息是在对角线元素中编码的。在反转矩阵,加快数值实现时,这可能是一个优势。
Massive neutrinos influence the background evolution of the Universe as well as the growth of structure. Being able to model this effect and constrain the sum of their masses is one of the key challenges in modern cosmology. Weak-lensing cosmological constraints will also soon reach higher levels of precision with next-generation surveys like LSST, WFIRST and Euclid. We use the MassiveNus simulations to derive constraints on the sum of neutrino masses $M_ν$, the present-day total matter density $Ω_{\rm m}$, and the primordial power spectrum normalization $A_{\rm s}$ in a tomographic setting. We measure the lensing power spectrum as second-order statistics along with peak counts as higher-order statistics on lensing convergence maps generated from the simulations. We investigate the impact of multiscale filtering approaches on cosmological parameters by employing a starlet (wavelet) filter and a concatenation of Gaussian filters. In both cases peak counts perform better than the power spectrum on the set of parameters [$M_ν$, $Ω_{\rm m}$, $A_{\rm s}$] respectively by 63$\%$, 40$\%$ and 72$\%$ when using a starlet filter and by 70$\%$, 40$\%$ and 77$\%$ when using a multiscale Gaussian. More importantly, we show that when using a multiscale approach, joining power spectrum and peaks does not add any relevant information over considering just the peaks alone. While both multiscale filters behave similarly, we find that with the starlet filter the majority of the information in the data covariance matrix is encoded in the diagonal elements; this can be an advantage when inverting the matrix, speeding up the numerical implementation.