论文标题

在一系列新的非局部交通流模型上,具有look-apavear规则

On a class of new nonlocal traffic flow models with look-ahead rules

论文作者

Sun, Yi, Tan, Changhui

论文摘要

本文提出了一类新的一维(1D)流量模型,并提出了审视规则,这些规则考虑了两种效果:非本地慢速下降效果和基本图中的右旋转非偏见的不对称性。提出的具有Arrhenius类型的1D蜂窝自动机(CA)模型在每辆汽车前的交通配置后,为汽车运动实现了随机规则。特别是,我们采用了两个不同的外观规则:一个是基于从所考虑的汽车到它前面汽车的距离;另一个取决于前方的汽车密度。这两种规则都具有多种动作的新颖概念,在恢复宏观动力学中的非covave通量方面起着关键作用。通过半分化的介绍随机过程,我们得出了CA模型的粗粒宏观动力学。我们还设计了一种数值方案,以模拟提出的基于列表的动力学蒙特卡洛(KMC)算法的CA模型。我们的结果表明,在各种参数设置下,KMC仿真的通量与不同的look-aphead规则的粗粒宏平均通量一致。

This paper presents a new class of one-dimensional (1D) traffic models with look-ahead rules that take into account of two effects: nonlocal slow-down effect and right-skewed non-concave asymmetry in the fundamental diagram. The proposed 1D cellular automata (CA) models with the Arrhenius type look-ahead interactions implement stochastic rules for cars' movement following the configuration of the traffic ahead of each car. In particular, we take two different look-ahead rules: one is based on the distance from the car under consideration to the car in front of it; the other one depends on the car density ahead. Both rules feature a novel idea of multiple moves, which plays a key role in recovering the non-concave flux in the macroscopic dynamics. Through a semi-discrete mesoscopic stochastic process, we derive the coarse-grained macroscopic dynamics of the CA model. We also design a numerical scheme to simulate the proposed CA models with an efficient list-based kinetic Monte Carlo (KMC) algorithm. Our results show that the fluxes of the KMC simulations agree with the coarse-grained macroscopic averaged fluxes for the different look-ahead rules under various parameter settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源