论文标题
快速图书馆驱动的方法,用于实施体素扩散功能技术,以纠正磁场不均匀性伪像
Fast library-driven approach for implementation of the voxel spread function technique for correcting magnetic field inhomogeneity artifacts
论文作者
论文摘要
目的:先前开发的体素扩散功能(VSF)方法(Yablonskiy等,MRM,2013; 70:1283)提供了通过宏观磁场不均匀性引起的伪影的手段,这些图像在由多级级别捕获的eCho(mgre)技术获得的图像中。这项研究的目的是为快速VSF实施开发一种图书馆驱动的方法。方法:VSF方法描述了磁场不均匀性对MGRE信号衰变的贡献,该效果是根据MGRE相和幅度图像计算得出的F功能的。此处使用了由磁场不均匀性引起的各种背景场梯度的预定库来加快F功能的计算,并从两名健康志愿者收集的MGRE数据中生成定量R2*图。结果:与基于Voxel方法的直接计算F功能的直接计算相比,新型图书馆驱动的方法将计算时间从几个小时减少到几分钟,而同时提供了相似的R2*映射精度。结论:本研究中提出的新程序提供了一种快速的后处理算法,可以将其纳入MGRE数据的定量分析中,以说明背景领域的不均匀性工件,因此可以促进基于MGRE的基于MGRE的定量技术在临床实践中的应用。
Purpose: Previously-developed Voxel Spread Function (VSF) method (Yablonskiy, et al, MRM, 2013;70:1283) provides means to correct artifacts induced by macroscopic magnetic field inhomogeneities in the images obtained by multi-Gradient-Recalled-Echo (mGRE) techniques. The goal of this study is to develop a library-driven approach for fast VSF implementation. Methods: The VSF approach describes the contribution of the magnetic field inhomogeneity effects on the mGRE signal decay in terms of the F-function calculated from mGRE phase and magnitude images. A pre-calculated library accounting for a variety of background field gradients caused by magnetic field inhomogeneities was used herein to speed up calculation of the F-function and to generate quantitative R2* maps from the mGRE data collected from two healthy volunteers. Results: As compared with direct calculation of the F-function based on a voxel-wise approach, the new library-driven method substantially reduces computational time from several hours to few minutes, while, at the same time, providing similar accuracy of R2* mapping. Conclusion: The new procedure proposed in this study provides a fast post-processing algorithm that can be incorporated in the quantitative analysis of mGRE data to account for background field inhomogeneity artifacts, thus can facilitate the applications of mGRE-based quantitative techniques in clinical practices.