论文标题

签名的Selmer椭圆形曲线组的Akashi系列和Euler特征,在P上方的Prime上可半降低

Akashi series and Euler characteristics of signed Selmer groups of elliptic curves with semistable reduction at primes above p

论文作者

Lei, Antonio, Lim, Meng Fai

论文摘要

让$ p $是一个奇数的质数,让$ e $是在数字字段$ f'$上定义的椭圆曲线,以便$ e $在$ f'$上方的$ f $ p $上的每一个prime上都有半固定的减少,并且至少在$ p $上方的一个prime上取代了一个。在适当的假设下,我们计算了$ \ m athbb {z} _p^d $ $ e $ $ e $的akashi系列$ e $ - extension to a $ f $ f'$。作为副产品,我们还计算了这些Selmer群体的Euler特征。

Let $p$ be an odd prime number, and let $E$ be an elliptic curve defined over a number field $F'$ such that $E$ has semistable reduction at every prime of $F'$ above $p$ and is supersingular at at least one prime above $p$. Under appropriate hypotheses, we compute the Akashi series of the signed Selmer groups of $E$ over a $\mathbb{Z}_p^d$-extension over a finite extension $F$ of $F'$. As a by-product, we also compute the Euler characteristics of these Selmer groups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源