论文标题
多极有效的一个体波形模型,用于旋转的黑洞二进制
A multipolar effective one body waveform model for spin-aligned black hole binaries
论文作者
论文摘要
我们介绍了\ Teobiresumsm {},这是一个有效的一体(EOB)波形模型的改进版本,用于旋转旋转的,合并的黑洞二进制文件,其中包括通过Merger and Ringdown完成的亚辅助引力模式。除了主要的$(\ ell,| m |)=(2,2)$一,整个参数空间的稳健多底数越强:$(2,1)$,$(3,3)$,$(3,2)$,$(4,4)$和$(5,5,5)$。多极环EOB波形源于适当地拟合来自模拟极限(SXS)协作的许多数值相对性(NR)波形数据,以及测试量质量的波形数据。混合效果未纳入。多极波形振幅的轨道(非限制)部分包括测试量结果,直至(相对)6pn顺序,对于大多数模式,padé被重新定义。 $ m $ =奇数波形多尔(最多$ \ ell = 5 $)包含大多数当前可用的旋转依赖性分析信息。改进以前的工作,我们确认某些$ m = \ text {奇数} $模式,例如。 $(2,1)$,甚至$(3,1)$,对于几乎相等的质量二进制文件,以及单个旋转的几种组合,幅度可能会在振幅中产生零(或最低)。对于这些模式,发现了此类零附近的显着EOB/NR协议。新的波形和辐射反应促使模型的旋转部门进行了新的NR校准,仅需$ 32 $ dataSet。 $ 100M_ \ odot \ leq m \ leq 200m_ \ odot $,除了带有$ \ max {(\ bar {f})} \ sim 0.85 \%$的单个异常值。当包括$(2,1)$,$(3,3)$和$(4,4)$模式时,人们找到了一项出色的EOB/NR协议,最高可达$ M \ sim 120m_ \ odot $,高于该绩效略有降低,并在$ 3 \%$ $上移动$ 3 \%$
We introduce \TEOBiResumSM{}, an improved version of the effective-one-body (EOB) waveform model \TEOBResumS{} for spin-aligned, coalescing black hole binaries, that includes subdominant gravitational waveform modes completed through merger and ringdown. Beyond the dominant $(\ell,|m|)=(2,2)$ one, the more robust multipoles all over the parameter space are: $(2,1)$, $(3,3)$, $(3,2)$, $(4,4)$ and $(5,5)$. The multipolar ringdown EOB waveform stems from suitably fitting many numerical relativity (NR) waveform data from the Simulating eXtreme Spacetimes (SXS) collaboration together with test-mass waveform data. Mode-mixing effects are not incorporated. The orbital (nonspinning) part of the multipolar waveform amplitudes includes test-mass results up to (relative) 6PN order and, for most modes,is Padé resummed. The $m$=odd waveform multipoles (up to $\ell=5$) incorporate most of the currently available spin-dependent analytical information. Improving on previous work, we confirm that certain $m=\text{odd}$ modes, e.g. the $(2,1)$, and even the $(3,1)$, may develop a zero (or a minimum) in the amplitude for nearly equal-mass binaries and for several combinations of the individual spins. A remarkable EOB/NR agreement around such zero is found for these modes. The new waveform, and radiation reaction, prompts a new NR-calibration of the spinning sector of the model, done with only $32$ datasets.The maximum $(2,2)$ EOB/NR unfaithfulness $\bar{F}$ with Advanced LIGO noise against the SXS catalog ($\sim 595$ datasets) is always below $0.5\%$ for binaries with total mass $M$ as $10M_\odot\leq M \leq 200M_\odot$, except for a single outlier with $\max{(\bar{F})}\sim 0.85\%$. When $(2,1)$, $(3,3)$ and $(4,4)$ modes are included, one finds an excellent EOB/NR agreement up to $M\sim 120M_\odot$, above which the performance degrades slightly and moves above $3\%$