论文标题

当自然数量的非平凡,小的划分处于算术中

When the Nontrivial, Small Divisors of a Natural Number are in Arithmetic Progression

论文作者

Chu, Hung Viet

论文摘要

Iannucci考虑了不超过$ \ sqrt {n} $的天然数字$ n $的正分离,并找到了所有形式的数字,这些数字在算术中都处于算术状态。在本文中,我们通过排除琐碎的除数$ 1 $和$ \ sqrt {n} $(当$ n $是平方)来概括了Iannucci的结果。令人惊讶的是,我们的算术进度的长度不能超过$ 5 $。

Iannucci considered the positive divisors of a natural number $n$ that do not exceed $\sqrt{n}$ and found all forms of numbers whose such divisors are in arithmetic progression. In this paper, we generalize Iannucci's result by excluding the trivial divisors $1$ and $\sqrt{n}$ (when $n$ is a square). Surprisingly, the length of our arithmetic progression cannot exceed $5$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源