论文标题

无碰撞等离子体中的孤独和周期性波:Adlam-Allen模型重新审视

Solitary and Periodic Waves in Collisionless Plasmas: The Adlam-Allen Model Revisited

论文作者

Allen, John E., Frantzeskakis, Dimitrios J., Karachalios, Nikolaos I., Kevrekidis, Panayotis G., Koukouloyannis, Vassilis

论文摘要

我们考虑了偏微分方程的Adlam-Allen(AA)系统,可以说,这是第一个在无碰撞等离子体中流体动力障碍传播的背景下描述孤立波的第一个模型。在这里,我们通过实施动态系统方法来确定模型的孤立波。后者表明,该模型还具有周期性波解 - 在无限时期的限制情况下将其减少到孤立波,以及此处获得的合理溶液。此外,通过相关的多尺度扩展方法采用长波近似值,我们确定了AA系统对Korteweg-de Vries方程的渐近减少。这种减少不仅是上述孤立波动力学的另一种理由,而且还可以为其他可能的血浆波的出现提供其他见解。进行直接数值模拟,以研究多个孤立波及其成对相互作用。根据潜在相关的标准讨论了孤立波的稳定性,而我们的数值实验探讨了空间周期性波解的鲁棒性。

We consider the Adlam-Allen (AA) system of partial differential equations which, arguably, is the first model that was introduced to describe solitary waves in the context of propagation of hydrodynamic disturbances in collisionless plasmas. Here, we identify the solitary waves of the model by implementing a dynamical systems approach. The latter suggests that the model also possesses periodic wave solutions --which reduce to the solitary wave in the limiting case of infinite period-- as well as rational solutions which are obtained herein. In addition, employing a long-wave approximation via a relevant multiscale expansion method, we establish the asymptotic reduction of the AA system to the Korteweg-de Vries equation. Such a reduction, is not only another justification for the above solitary wave dynamics, but also may offer additional insights for the emergence of other possible plasma waves. Direct numerical simulations are performed for the study of multiple solitary waves and their pairwise interactions. The stability of solitary waves is discussed in terms of potentially relevant criteria, while the robustness of spatially periodic wave solutions is touched upon by our numerical experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源