论文标题

从社交媒体中命名实体识别的多模式深度学习方法

A multimodal deep learning approach for named entity recognition from social media

论文作者

Asgari-Chenaghlu, Meysam, Feizi-Derakhshi, M. Reza, Farzinvash, Leili, Balafar, M. A., Motamed, Cina

论文摘要

社交媒体帖子中指定的实体识别(NER)是一项具有挑战性的任务。用户生成的内容构成了社交媒体的性质,是嘈杂的,并且包含语法和语言错误。这种嘈杂的内容使得诸如命名实体识别之类的任务变得更加困难。我们提出了两种利用多模式深度学习和变压器的新型深度学习方法。我们的这两种方法都使用简短的社交媒体帖子中的图像功能来为NER任务提供更好的结果。在第一种方法上,我们使用InceptionV3提取图像功能,并使用Fusion结合文本和图像特征。当用户提供了与实体相关的图像时,这会显示更可靠的名称实体识别。在第二种方法中,我们使用图像功能与文本结合并将其馈入诸如变压器之类的BERT。实验结果,即,与其他最先进的解决方案相比,精确度,回忆和F1评分指标表明我们工作的优越性。

Named Entity Recognition (NER) from social media posts is a challenging task. User generated content that forms the nature of social media, is noisy and contains grammatical and linguistic errors. This noisy content makes it much harder for tasks such as named entity recognition. We propose two novel deep learning approaches utilizing multimodal deep learning and Transformers. Both of our approaches use image features from short social media posts to provide better results on the NER task. On the first approach, we extract image features using InceptionV3 and use fusion to combine textual and image features. This presents more reliable name entity recognition when the images related to the entities are provided by the user. On the second approach, we use image features combined with text and feed it into a BERT like Transformer. The experimental results, namely, the precision, recall and F1 score metrics show the superiority of our work compared to other state-of-the-art NER solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源