论文标题
表面化石磁场对巨大恒星进化的影响:ii。台面中的磁制动实施以及对OB恒星表面旋转演变的影响
The effects of surface fossil magnetic fields on massive star evolution: II. Implementation of magnetic braking in MESA and implications for the evolution of surface rotation in OB stars
论文作者
论文摘要
巨大恒星的角动量和表面旋转的时间演化受到化石磁场的强烈影响。我们提出了一个新的模块,该模块包含一个简单,全面的实现,可以在模块中巨大恒星的表面进行实验,以实验恒星天体物理学(MESA)软件仪器。我们测试了两个限制场景的磁制动:在第一种情况下,在整个恒星中分布角动量损失,并将角动量损失限制为第二种情况下的表面储层。我们使用具有表面磁场的OB星模型($ M_ \ star = 5-60 $ M $ _ \ ODOT $,$ω/ω_ {\ rm Crit} = 0.2-1.0 $,$ B_ {\ b_ {\ rm P} = 1-20 $ kg)。 We then employ a representative grid of B-type star models ($M_\star=5, 10, 15$ M$_\odot$, $Ω/Ω_{\rm crit} =0.2 , 0.5, 0.8$, $B_{\rm p} = 1, 3 ,10, 30$ kG) to compare to the results of a recent self-consistent analysis of the sample of known magnetic B型星。我们推断出磁性巨大的恒星以一系列旋转速率到达零年龄的主序列,而不是一个共同的值。特别是,某些恒星必须在ZAM上进行近距离旋转。但是,磁制动产生的表面旋转速率会收敛到公共低值,因此很难推断出进化,缓慢旋转的恒星的初始旋转速率。
The time evolution of angular momentum and surface rotation of massive stars is strongly influenced by fossil magnetic fields via magnetic braking. We present a new module containing a simple, comprehensive implementation of such a field at the surface of a massive star within the Modules for Experiments in Stellar Astrophysics (MESA) software instrument. We test two limiting scenarios for magnetic braking: distributing the angular momentum loss throughout the star in the first case, and restricting the angular momentum loss to a surface reservoir in the second case. We perform a systematic investigation of the rotational evolution using a grid of OB star models with surface magnetic fields ($M_\star=5-60$ M$_\odot$, $Ω/Ω_{\rm crit} =0.2-1.0$, $B_{\rm p} =1-20$ kG). We then employ a representative grid of B-type star models ($M_\star=5, 10, 15$ M$_\odot$, $Ω/Ω_{\rm crit} =0.2 , 0.5, 0.8$, $B_{\rm p} = 1, 3 ,10, 30$ kG) to compare to the results of a recent self-consistent analysis of the sample of known magnetic B-type stars. We infer that magnetic massive stars arrive at the zero age main sequence with a range of rotation rates, rather than with one common value. In particular, some stars are required to have close-to-critical rotation at the ZAMS. However, magnetic braking yields surface rotation rates converging to a common low value, making it difficult to infer the initial rotation rates of evolved, slowly-rotating stars.