论文标题
核时依赖性密度功能理论的实施及其在核异构电偶极子共振上的应用
An implementation of nuclear time-dependent density-functional theory and its application to the nuclear isovector electric dipole resonance
论文作者
论文摘要
遵循以前的论文[Y.史,物理。 Rev. C 98,014329(2018)],我们提出了密度功能理论的扩展,以允许基于获得的静态Hartree-Fock结果进行动态计算。我们通过将计算结果与现有代码SKY3D的结果进行比较,进行了广泛的基准计算。为了使用TDDFT方法执行线性响应计算,已经与有限振幅准粒子随机相近似(FAM-QRPA)方法进行了比较。我们计划将TDDFT方法应用于ZR,MO和RU同位素中IVD共振的系统描述。 IVD共振的优势是使用两种互补方法计算的:TDDFT和FAM-QRPA方法。对于TDDFT结果,使用经过良好测试的代码SKY3D进行了其他基准计算。在这三个模型中,已经仔细检查了对结果的重要成分,例如Time-ODD电位,边界条件,平滑程序,虚假峰等。 一旦两个代码都使用相同的时间-ODD平均字段和吸收边界条件,当前的TDDFT和SKY3D代码几乎产生了几乎相同的响应函数。使用TDDFT和FAM-QRPA方法计算得出的IVD共振的优势与巨型偶极子共振的相同位置相当吻合。在看到实施的代码提供的合理精度后,我们对存在实验数据的球形ZR和MO同位素进行系统的TDDFT计算,并在$ n = 50 $附近执行。对于存在形状进化的富含中子的ZR,MO和RU同位素,我们预测基于植物和三轴最小值的光吸收横截面。
Following a previous paper [Y. Shi, Phys. Rev. C 98, 014329(2018)], we present an extension of the density-functional theory to allow for dynamic calculations based on the obtained static Hartree-Fock results. We perform extensive benchmark calculations, by comparing the calculated results with that of an existing code Sky3D. To perform linear-response calculations using the TDDFT method, comparisons have been made with the finite-amplitude quasiparticle random-phase approximation (FAM-QRPA) method. We plan to apply the TDDFT method to a systematic description of the IVD resonances in the Zr, Mo, and Ru isotopes. The strengths of IVD resonances are calculated using two complementary methods: TDDFT and FAM-QRPA methods. For the TDDFT results, additional benchmark calculations have been performed using the well-tested code Sky3D. In these three models, the important ingredients which have major influence on the results, such as time-odd potentials, boundary conditions, smoothing procedures, spurious peaks etc., have been carefully examined. The current TDDFT and the Sky3D codes yield almost identical response functions once both codes use the same time-odd mean fields and absorbing boundary conditions. The strengths of the IVD resonances calculated using the TDDFT and FAM-QRPA methods agree reasonably well with the same position of the giant dipole resonance. Upon seeing a reasonable accuracy offered by the implemented code, we perform systematic TDDFT calculations for spherical Zr and Mo isotopes near $N=50$, where experimental data exist. For neutron-rich Zr, Mo, and Ru isotopes where shape evolution exist we predict the photoabsorption cross sections based on oblate and triaxial minima.