论文标题
平均场中的HOPF分叉解释了激发抑制平衡神经元网络中的关键雪崩:多尺度可变性的机制
Hopf Bifurcation in Mean Field Explains Critical Avalanches in Excitation-Inhibition Balanced Neuronal Networks: A Mechanism for Multiscale Variability
论文作者
论文摘要
皮质神经回路在单个神经元中表现出高度不规则的尖峰,但大小的集体射击,振荡和人口级别的关键雪崩在人群水平上,所有这些对信息处理都具有功能重要性。从理论上讲,激发和抑制输入的平衡被认为是尖峰的不规则性和关键雪崩的解释,可能源于基本相变。但是,神经回路中这些多层次动态方面的理论和解仍然是一个悬而未决的问题。在此,我们研究了具有生物学上现实的突触动力学的刺激抑制(E-I)平衡神经元网络。它可以保持不规则的尖峰动力学,并在同步过渡点附近出现不同水平的同步和关键雪崩。我们提出了一种新型的半分析均值场理论,以得出控制网络宏观动力学的场方程。它表明,表现出不规则个体尖峰的网络的E-1平衡状态的特征是宏观稳定状态,该状态可以是固定点或周期性运动,并且通过宏观镜面中的HOPF分叉来预测过渡。此外,通过分析公共数据,我们发现小鼠皮质切片的自发峰值活性在体外的自发尖峰活动中存在不规则的尖峰和关键雪崩的共存,表明观察到的现象的普遍性。我们的理论揭示了允许在不同时空量表中进行复杂的神经活动的机制,以共存并阐明神经系统临界的可能起源。它还提供了一种新颖的工具,用于分析E-I平衡网络的宏观动力学及其与显微镜对应物的关系,这对于大规模建模和皮质动力学计算可能很有用。
Cortical neural circuits display highly irregular spiking in individual neurons but variably sized collective firing, oscillations and critical avalanches at the population level, all of which have functional importance for information processing. Theoretically, the balance of excitation and inhibition inputs is thought to account for spiking irregularity and critical avalanches may originate from an underlying phase transition. However, the theoretical reconciliation of these multilevel dynamic aspects in neural circuits remains an open question. Herein, we study excitation-inhibition (E-I) balanced neuronal network with biologically realistic synaptic kinetics. It can maintain irregular spiking dynamics with different levels of synchrony and critical avalanches emerge near the synchronous transition point. We propose a novel semi-analytical mean-field theory to derive the field equations governing the network macroscopic dynamics. It reveals that the E-I balanced state of the network manifesting irregular individual spiking is characterized by a macroscopic stable state, which can be either a fixed point or a periodic motion and the transition is predicted by a Hopf bifurcation in the macroscopic field. Furthermore, by analyzing public data, we find the coexistence of irregular spiking and critical avalanches in the spontaneous spiking activities of mouse cortical slice in vitro, indicating the universality of the observed phenomena. Our theory unveils the mechanism that permits complex neural activities in different spatiotemporal scales to coexist and elucidates a possible origin of the criticality of neural systems. It also provides a novel tool for analyzing the macroscopic dynamics of E-I balanced networks and its relationship to the microscopic counterparts, which can be useful for large-scale modeling and computation of cortical dynamics.